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“A fax machine is just a waffle iron with a phone attached” 

Abraham Simpson 

Chapter 6 -  Software architecture 

This chapter presents a new software architecture that I have developed, named Tinmith-

evo5, for the development of the applications described in this dissertation. In order to 

implement a modelling application with AR working planes, construction at a distance, and 

user interface, a complex underlying infrastructure is required to simplify the development. 

Currently there are a limited number of existing toolkits for the development of 3D virtual 

environment applications, but each is optimised for a particular feature set different from the 

ones that I require. Tinmith-evo5 is designed for the development of mobile AR and other 

interactive 3D applications on portable platforms with limited resources. The architecture is 

implemented in C++ with an object-oriented data flow design, an object store based on the 

Unix file system model, and also uses other ideas from existing previous work. The Tinmith-

evo5 software architecture addresses the following problems currently affecting mobile AR 

and similar environments: 

Hardware changes rapidly over time, and so should be abstracted to allow portability 

across different environments without changing the source code. 

Mobile AR is limited by portability constraints and choices must be made between 

large and powerful or small and less capable equipment. Software for outdoor use 

must be efficiently designed and be able to run on mobile hardware that may be a 

number of generations behind current state of the art indoor computers. 

3D graphics systems traditionally operate using a flat Earth model and do not readily 

deal with large areas of the planet that can be roamed with a mobile AR system. Being 
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able to handle coordinates that span a wide range of scales, from millimetre-level 

tracking of the hands to moving over hundreds of kilometres of land is required. 

User interfaces for mobile AR are quite primitive and there is limited toolkit support 

for developing applications. This problem is difficult to solve and current development 

in this area is quite immature. 

This chapter begins with a design overview, followed by a summary of previous work 

describing existing systems and their features. The design of the architecture is then 

described, including concepts such as data flow and object distribution. The object storage 

system forms a core part of the architecture and is described in the following section. The next 

section describes the more interesting aspects of the implementation of the software. The 

abstraction of trackers and sensors with four different representations is then described. The 

usefulness of this software architecture is demonstrated with the applications developed for 

this dissertation and a number of extra demonstrations presented at the end of this chapter. 

6.1 Design overview 

Three dimensional environments are a challenging area to develop applications for since 

hardware devices are constantly evolving and non-standardised, there are a number of 

approaches to user interface design, and each application has different requirements. In 2D 

desktop environments, similar problems are better understood and high-level software toolkits 

are available so developers can focus on writing applications rather than implementation 

details. With 3D environments being newer and less understood, most available software 

toolkits are simple and low level, such as hardware abstraction layers. Shaw et al. explain how 

the development of high-level software is not possible until there is a stable base of low-level 

toolkits to support them [SHAW93]. Beyond simple abstractions however, there are only a 

few software systems that attempt to address higher-level problems and each is designed for 

supporting particular types of applications. This chapter develops a high-level architecture 

that is demonstrated with a mobile AR modelling application but may be also useful in other 

application domains. 

The first main concept used in the software architecture is that of data flow. Figure 6-1 

depicts this data flow from an overall perspective, with sensor data arriving into the AR 

system, being processed by specific application code and configurations, and then rendered to 

the HMD of the user. The data flow model is supported by the use of objects to perform 

specific actions such as processing tracker data, combining results, and rendering 3D 

graphics. Objects allow problems to be broken down into simple tasks to simplify software 
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development. Objects are connected together into a directed graph, and as new values enter 

the system, the values are processed through the graph as a flow of data, adjusting the current 

state and eventually rendering to the HMD. These objects can be distributed across multiple 

processes or computers in units named execution containers, with the data flow occurring 

over a network when required. 

Research toolkits are designed using many different methodologies and are difficult to use 

together because of conflicting requirements. In the future these may become standardised but 

for now I avoid trying to make immature and opposing toolkits work directly together so that 

I can perform research into new ways of developing software. All the components of the 

architecture are developed from the ground up using a common methodology, with 

abstractions to hide away any differences from external libraries that are required. The goal is 

to not to treat the application as a combination of scene graph, tracking library, and shared 

memory, but instead as a single entity with blurred boundaries. 

As part of the integrated component design methodology, the entire system has been 

structured around the model of a memory-based file system. Instead of using global variables 

to reference the many objects available in the system, an object storage system based on Unix 

file system semantics provides a logical interface that is easy to understand. All objects that 

process data in the system are stored in this object repository, making them accessible to other 

objects in the system through discovery at run time. The ability to perform distribution across 

multiple computers is added as an extra component using object data flow, and is not an 

internal part of the architecture that imposes a constant performance penalty whether in use or 

not.

The most important goal with the design of this software architecture is performance. Due 

to limitations in wearable computer hardware, it is important that as much work as possible be 

extracted out of the resources available. The C++ language and optimising compilers are used 

for all development, supporting both low-level code and high-level features such as object-

oriented programming. The renderer that forms a core component of most applications is 

HMD

Runtime
Config

Application
Code

Tinmith-evo5Sensors

Figure 6-1 Overall architecture showing sensors being processed using libraries and 
application components, and then rendered to the user’s HMD 
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implemented using OpenGL and provides high performance graphics support when 3D 

acceleration hardware is present in the system. The software has been used on a number of 

small and relatively slow computers and is capable of running adequately in most cases, the 

exception being the rendering of large 3D scenes. 

6.2 Previous work 

There has been a wide range of previous work in the area of software toolkits for the 

implementation of VE applications, although there is no complete solution and is still an 

active research area. Shaw et al. describe how developing high-level tools requires a good 

understanding of the types of interactions, as well as low-level toolkits to provide necessary 

support. To support this statement, Shaw et al. explain how high-level tools for 2D user 

interfaces did not appear until researchers gained sufficient experience developing interfaces 

with this style. These high-level tools also did not exist until other more low-level toolkits 

were created to provide the necessary services. Currently the VE area is still quite immature 

when compared to 2D environments, and so more understanding is required to implement a 

usable toolkit. 

This section discusses a number of low and high-level toolkits that have been developed to 

help implement VE applications efficiently. There are a number of areas that need to be 

addressed, such as data distribution, rendering, user interaction, tracker abstractions, and rapid 

prototyping. There is no single toolkit that solves all problems however, as tradeoffs must be 

made to support one feature at the expense of another. Tinmith-evo5 uses many of the ideas 

developed in these toolkits and applies them to the problems that need to be solved for mobile 

outdoor AR. Software architectures for areas such as wearable context awareness or other 

high-level information sharing are not described since they do not support 3D user interfaces. 

6.2.1 Hardware abstraction libraries 

Virtual environments typically require the use of tracking devices that measure three or 

more degrees of freedom. Tracker abstraction layers are implemented to hide away various 

differences in hardware and provide a common model so that the application only needs to be 

written once for many devices. Similar abstractions are commonly used for 2D desktop input 

devices such as mice and keyboards. Researchers such as Shaw et al. and Taylor et al. 

identified the need to have these abstractions in 3D environments and implemented software 

toolkits such as the MR Toolkit [SHAW93] and VRPN [TAYL01]. Shaw et al. saw the MR 

Toolkit as being an important low-level component for future development of higher-level 

user interface libraries. With many VE systems of the time being implemented using multiple 
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computers, both MR Toolkit and VRPN are designed to support the transmission of tracker 

updates via packets on a network. Trackers can be moved to different machines or replaced 

with different devices without requiring any changes to the source code of the applications 

that use them. 

Other toolkits have also been developed, increasing the levels of abstraction beyond just 

input devices: Hubbold et al. developed the MAVERICK system [HUBB99], Bierbaum et al. 

developed the VrJuggler libraries [BIER01] [BIER98], and Kelso et al. developed the 

DIVERSE libraries [KELS02]. Each of these systems provides an inner kernel that connects 

together various components such as input abstractions for trackers, support code for 

processing data, and output abstractions to various rendering systems such as OpenGL, IRIS 

Performer, and Open Inventor. These systems all provide similar functionality to those 

discussed previously, providing network transport for tracker device updates and the ability to 

modify configurations either at startup or at run time without modifying source code. 

Another recent tracker abstraction is OpenTracker by Reitmayr and Schmalstieg 

[REIT01b]. It implements abstractions similar to those discussed previously, but in the form 

of a filter graph for arbitrary processing. Three different types of object nodes are provided: 

source nodes to read values from trackers, filter nodes to take source values and perform 

operations such as smoothing and conversions, and sink nodes to take the results and output 

them to other parts of the system. Using XML configuration files, the user can define 

complex filter graphs without requiring source code to be modified. 

Other more high-level libraries (such as Coterie [MACI96], Division’s dVS [GRIM93], 

and the Sense8 World Toolkit [SENS03]) discussed later in this section also include 

abstractions similar to those previously mentioned. 

6.2.2 Distributed entity systems 

One current area of investigation is the implementation of distributed virtual environments. 

This involves simulating entities on machines and then viewing them on remote clients over a 

network. The main focus of this research is on the protocols rather than the toolkits, such as 

SIMNET by Calvin et al. [CALV93] and NPSNET by Zyda et al. [ZYDA92] that use 

protocols similar to DIS [IEEE93]. These protocols are not able to send full scene graphs or 

object databases, but instead only send position, orientation, and other simple data for each 

entity. The client viewer is responsible for supplying the models and performing the 

rendering, which is not defined by the protocol. By making these restrictions however, these 

systems are efficient and tend to scale up to large numbers of entities and computers. 
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Other systems such as the previously described BARS extend the distribution of data to 

wearable computers. Brown et al. describes the development of a data distribution mechanism 

for events to support collaboration between multiple users [BROW03]. Since the system only 

propagates events, complicated geometry and animation are not transmitted over the network 

and are assumed to be stored locally. The propagation of events may be used to convey 

objectives to mobile AR wearable users, communicate messages and reports, and update 

entity locations and attributes in a database. 

A common problem with many distributed systems is that network data is decoded using 

fixed programs that can only handle protocols known in advance. For example, software that 

handles DIS protocol requires modifications if any of the enumerated values change meaning. 

These problems are addressed by Watsen and Zyda with the Bamboo system [WATS98a] 

[WATS98b]. Instead of having a single monolithic code base, Bamboo contains a small 

kernel that can perform the loading of other modules. When information arrives from the 

network that cannot be decoded, a request is sent for a decoder object. When the decoder 

object arrives, Bamboo loads it into memory so that the incoming packets can be processed. 

Bamboo uses a plug-in architecture to allow reconfiguring of software at run-time, and does 

not require modules to be stored locally. Other systems such as Octopus by Hartling et al. 

[HART01] also support distributed VE applications based on similar protocols to that used in 

Bamboo. 

6.2.3 Software systems 

There are a number of software systems that implement higher-level abstractions, using 

concepts previously described as a base for further development. Two early commercial 

toolkits are dVS by Grimsdale [GRIM93] and the World Toolkit by Sense8 Incorporated 

[SENS03]. These are both designed to be used by developers to develop interactive VE 

applications involving many computers, different tracking devices, and various kinds of 

output technology such as video and audio. dVS is implemented using an architecture based 

on the concept of actors. Each actor performs a task such as display or sensor inputs, and 

these run in parallel and communicate with each other. This parallelism naturally supports 

multiple users for collaborative tasks. World Toolkit also provides a wide range of features 

such as a scene graph, abstractions for absolute and relative tracking devices, objects 

containing properties, the ability for properties to trigger events, and sharing of data across 

multiple machines. 
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There are a number of rendering and scene graph libraries available, with the most 

commonly used ones being based on hardware accelerated OpenGL calls. OpenGL was first 

developed by Silicon Graphics and provides low-level interfaces to produce realistic 3D 

graphics while hiding this complexity from the application programmer. To provide more 

functionality for application development, Silicon Graphics developed Open Inventor 

[STRA92] and IRIS Performer [ROHL94]. These are both scene graph libraries but Performer 

is designed for high performance visual simulation applications while Inventor is used for 

more complex user interfaces. Similar capabilities for rendering scene graphs are provided in 

Sun Microsystems’ Java3D libraries [SUNM97]. 

Scene graph libraries require a format to represent objects when they are being stored or 

transported across a network. The VRML 2.0 standard was developed by the VRML 

Consortium [VRML97] and is a declarative language specifying the layout of a scene graph, 

with a format similar to that developed for Open Inventor. VRML also includes numerous 

features for implementing interactive applications [CARE97], such as fields and routes. 

Objects in VRML contain attributes referred to as fields, with inputs such as the centre point, 

radius, and other values that control appearance. Object attributes may also be used to provide 

output events, such as when a virtual switch is flicked the field will generate a Boolean event. 

By using a route command, input and output fields may be connected so that one object can 

cause changes in another. Using fields and routes implements a kind of data flow approach 

where changes propagate from one object to another by linking them together. 

The research system VB2 by Gobbetti and Balaguer [GOBB93] is designed to demonstrate 

the use of constraints to implement relationships between objects in virtual environments. 

When an object has been grabbed and a tracker generates an update, the constraint engine 

propagates these values into the scene graph, allowing the user to alter the position and 

orientation of objects. Constraints are one possible method of implementing the flow of data 

between various objects in a system. 

The ALICE system [PAUS95] is a high-level authoring tool allowing novice users to 

implement VE applications. The user can specify object behaviours using a scripting language 

and then interact with the environment, exploring various possibilities. Since ALICE is more 

of an authoring tool, it is not designed to be extended beyond the features accessible with its 

scripting language and provided function calls. 

The Lightning system by Blach et al. [BLAC98] is based on scene graph and data flow 

concepts developed by Inventor and VRML. A pool of objects is created and maintained by 
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the application, and these are connected together to take events from various objects, process 

them, and then render them to the display. 

The DWARF system by Bauer et al. [BAUE01] is designed as a framework for the 

development of augmented reality applications. A complete system is built up using a number 

of components which provide services that are made available using CORBA. The DWARF 

framework is used to connect these services together within a local host or over a network. 

6.2.4 Fully distributed systems 

Many of the previously described systems only distribute small parts of their internal state 

to provide data for other applications. The following systems provide more complete 

distribution, where entire applications and scene graphs are synchronised between multiple 

hosts to make complex collaborative applications possible. 

The Coterie system was developed by MacIntyre and Feiner to help implement 

applications for distributed virtual environments [MACI96]. One example of Coterie in use 

was for the development of the Touring Machine by Feiner et al. [FEIN97]. MacIntyre and 

Feiner identified a number of problems with simple tracker abstractions and set to develop a 

more complete solution. Coterie is implemented in Modula-3 and uses modification of 

language-level primitives to support the implementation of a distributed shared memory. This 

is integrated with packages that support an in-built interpreted language, threaded processing, 

tracker abstractions, and 3D animated rendering. Multiple threads in the system execute code 

within objects and communicate via a distributed shared memory, with each update method 

call passing through a sequencer to ensure accurate synchronisation between processes. All 

the components of the system are developed to use this shared memory, including the 

distributed scene graph Repo-3D [MACI98]. 

Frecon and Stenius developed the DIVE system [FREC98] which is based on previous 

distributed entity research. Instead of just generating entity updates, this system is capable of 

propagating nodes in a scene graph without requiring previously stored descriptions in the 

remote host. Nodes introduced into the scene graph are not controlled by any particular 

software instance, and so once created the software instance can disconnect and the scene 

graph nodes will remain in the memory of other running instances. Updates are handled by 

sending compact differences against previous objects using a multicast protocol, reducing the 

bandwidth used for the transmission of updates. 

The current Studierstube framework described by Schmalstieg et al. is used for the 

implementation of various distributed AR applications [SCHM00]. Studierstube also 
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interfaces to the previously described OpenTracker libraries [REIT01b]. The original 

Studierstube framework was based on Inventor and is used to implement new user interfaces 

such as the Personal Interaction Panel [SZAL97]. The Inventor toolkit was then extended by 

Hesina et al. to produce a distributed version that propagates changes in the scene graph over 

a network [HESI99]. Applications must use Inventor-based objects for all rendering and user 

interface components, and so certain operations like drawing 2D overlays on a 3D scene are 

difficult because Inventor does not support these. Since Studierstube is limited to distributing 

values that are contained within the scene graph (under the control of Inventor), any other 

application data will not be synchronised between instances. Schmalstieg and Hesina describe 

how internal application values can be stored within objects extended from Inventor base 

classes [SCHM02]. These application values then can be stored in the scene graph and 

distributed like any other graphical object. While MacIntyre and Feiner’s system implements 

all applications using shared memory, the work by Schmalstieg et al. performs the opposite 

and implements everything inside the distributed scene graph. By embedding entire 

applications into the scene graph Schmalstieg and Hesina demonstrate how applications can 

be migrated between separate computers through the distributed scene graph, and processing 

of inputs can be distributed easily across multiple instances. 

The Avocado framework by Tramberend [TRAM99] is similar in design to both 

Distributed Inventor [HESI99] and Repo3D [MACI98] for distributed scene graphs over a 

network. Avocado is based on Performer and so is designed primarily for use in complex 

visualisation applications. Tramberend extended the base Performer objects with a wrapper 

that provides storage of fields and the ability to serialise them. Private inheritance and access 

methods are used to force applications to work through this interface and updates are sent to 

the network whenever changes are made. Fields can be connected together with field 

connections, (similar to VRML fields and routes) and used to implement data flow style 

connections between objects in the system. Sensor objects provide Avocado with interfaces to 

tracker abstractions and service objects are used to access low-level APIs. The Scheme 

scripting language is embedded into the system so that parts of applications developed can be 

modified at run time without recompilation. 

6.3 Object design 

This section describes the overall design of the classes in the software architecture. Class 

definitions used in the software architecture can be divided into four categories – those for 

representing data values (data), those for processing input data values and then producing 

some kind of output values (processing), those for implementing core features that other 
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classes can inherit or use (core), and helper code that implements interfaces to streamline 

development (helper). Each class can also be classified into one of the categories depicted in 

Figure 6-2. Applications require classes from both high and low levels to be instantiated as 

objects and connected together. Each class can contain nested sub-objects of other class types 

or primitive C++ values such as pointers, floats, integers, and strings. 

6.3.1 Data flow 

Data objects in the system are used to supply input for processing objects, which then 

produce an output data object that can then be propagated to other processing objects for 

further operations. Figure 6-3 depicts how this input data arrives at a node and is then 

processed to produce new output. Objects can be connected together into a directed graph that 

forms a flow of data through the system. Figure 6-4 depicts how data values initially arrive as 

tracker inputs, and are then processed in various stages of a virtual pipeline before reaching 

the user in the form of rendered output. This figure depicts categories for the objects used in 

various stages of the pipeline, but is only an approximate model. 

The data flow model is implemented by having processing objects listen to events that are 

Application Support
Menu driver, Event handler, Dialogs, Selections

3D / 2D Render
Scene graph, CSG ops, Manipulation

Interface / Transform
Coordinate systems, Trackers, Transformations

Low Level & I/O
Support code, Callbacks, Serialisation, I/O libs

Application Implementation
Tinmith-Metro, Custom models and menus

Figure 6-2 Layers of libraries forming categories of objects available to process data 

inputs 

output Processing 

inputs 

Figure 6-3 Data values flow into a node for processing, producing output values 
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generated by data objects. When the data object changes to a new value, interested listening 

objects are notified of this change via callbacks. This is similar to the observer/observable 

pattern described by Gamma et al. [GAMM95]. Any number of processing objects can listen 

in on a data value, and processing objects can have any number of output values for others to 

listen to. The use of data flow to propagate values through various processing objects has 

been performed in systems such as OpenTracker [REIT01b] and Avocado [TRAM99]. The 

VRML concept of fields and routes allows embedded scripts to process values when they 

change [CARE97] [VRML97]. Based on this previous work the data flow approach seems an 

ideal solution, especially considering that 3D applications tend to perform data processing in 

sequential steps. 

6.3.2 Serialisation and distribution 

Objects in the system are represented using the C++ compiler’s native internal format. It is 

not possible to simply take the binary data for the object and directly save it to disk or 

transport it across a network since it is specific to the running process only. The ability to save 

the state of a running system and then restart it at a later time or transfer it to another machine 

is desirable, and so a generic format that can represent application state is required. 

Serialisation is not available in C++ by default and so extra logic is provided to handle this 

requirement (the implementation details are discussed later). A structured XML format is used 

by default, with a binary format used to reduce the size of the data when required. Nested 

Hardware abstraction
Convert data into object

Process object data flow
Conversions, state machines

Scene graph
Modify objects, CSG interactions

Render
3D objects plus 2D overlay

Tracker devices
USB, Serial, PS/2

Figure 6-4 Expanded view of data flow model showing stages of processing 
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objects are processed by recursively calling the serialisation code and the results are 

assembled together for the top-level object. 

The first use for a serialisation capability is to store persistent configurations on disk. The 

XML header is parsed to determine the object type, matching C++ objects are instantiated, 

and are configured to contain the values in the XML data. When the application is shut down 

these objects may be serialised back to disk so that it can resume its previous state at a later 

time. The serialised XML files may be used as a configuration system, and can be edited with 

a text editor or stored in a database. These objects can also be modified and reparsed at run 

time to adjust the application while in operation. This allows changing aspects of the 

application without having to resort to slower interpreted language support. While internal 

components such as network and disk interfaces cannot be serialised in this fashion, the parts 

of the application that a user would like to change are supported. Similarly, OpenTracker uses 

XML-based configurations for filter graphs [REIT01b], VR Juggler uses text files for tracker 

reconfiguration [JUST01], and Diverse uses compiled C++ modules switchable at run time 

[KELS02].

This serialisation capability may also be used to implement distributed applications. An 

important feature is that the system does not force the user to use this capability. In most 

cases, applications are implemented as single processes and interactions between objects 

occur using simple function call-based callbacks. The overhead of supporting the callback 

updates is very minimal when only local data is used. In contrast, many other systems require 

the application to use IPC interfaces even when operations are being performed locally, taking 

its toll as a large penalty on performance. Rather than use an internal architecture based 

around distributed shared memory [MACI96] or a scene graph [HESI99] [SCHM02], the 

distribution of information across multiple processes can be performed using objects in the 

data flow model. 

Figure 6-5 part (1) depicts two objects that are connected via callbacks, and the listener is 

notified when the source signals a change has been made. Figure 6-5 part (2) depicts how 

objects can be inserted to implement distribution. When the source generates a new value, the 

Tx object serialises the new value and then transmits it over a network or other IPC 

mechanism. The Rx object at the destination receives the incoming data, deserialises it in 

place using the same class and then signals to the listeners of the object that new data is 

available. The listener object then receives a callback in the same way as in Figure 6-5 part 

(1). This distribution mechanism is transparent to the listening objects since it is implemented 

using the same interfaces as any other processing object. The object store described later 
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automatically provides network distribution when required so that the programmer does not 

need to implement this functionality. 

The mechanism used for distribution (via callbacks and a possible network interface) is 

efficient because updates are only sent to those processing objects that are interested. Each 

object is stored on a particular server and other clients can make requests to receive updates 

when changes are made. For small systems, this is more efficient than broadcast protocols, 

although for large systems with thousands of processes each requiring a value this may not be 

appropriate. By using proxy processes, cached copies of values may be further distributed to 

others, which can assist with scaling. If a client needs to change the master value, the server 

must be configured to circularly listen for events from the client, or allow updates to be forced 

in via the network command interface (described later in this chapter). Any changes forced in 

by the client will be lost by the server when the next incoming value arrives from the source, 

so this method is only practical when the value is no longer updating. 

6.4 Object storage 

Systems containing many objects that interoperate require techniques to organise this 

complexity. This section introduces the concept of an object store based on a model of the 

Unix file system. This concept takes advantage of the ease with which users normally deal 

with files on a disk, and how the storage of objects can be directly mapped against the model 

and the benefits this provides. 

Listener Source 

Listener Source 

Callback Function Call

Rx Tx Net 

(1) Single Process / Single CPU (Default) 

(2) Multiple Processes / Distributed On Network 

Figure 6-5 Network distribution is implemented transparently using automatically generated 
serialisation callbacks and a network transmission interface 
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6.4.1 Unix file system design 

The Unix operating system (and clones) implements a hierarchical file system to organise 

and store data [MCKU96]. File systems provide an abstraction to simplify the storage of data 

on a disk that is otherwise just a raw linear collection of fixed size blocks (typically 512 

bytes). Files can easily exceed the block size and so higher-level abstractions are required for 

storage. An inode contains information about a file on a disk as well as a list of ordered 

pointers to blocks containing data. Each inode contains a unique identifier and is stored in a 

list at a fixed location on the disk. 

Directory structures were developed to store mappings between human readable text 

names and numeric inode values. Directories are also stored using inodes and have an 

associated unique identifier. Since both directories and files are represented using inodes, 

directories can provide text names for other directory inodes and so form a hierarchical tree 

structure. A top-level root inode (with identifier 0) is used to represent the root directory (/) of 

the structure. Nodes in the tree can be accessed by specifying the name of each directory 

joined together using forward slash (/) characters. Path names that begin with a / character are 

referred to as absolute paths and are relative to the top-level root node. Other path names 

starting with a name are referred to as relative paths and are accessed from the current 

working directory. Paths may contain aliases that have special meaning - the name . (single 

dot) is a relative reference to the current directory, while .. (two dots) is a relative reference to 

the parent of the current directory. Each file and directory is named relative to its parent and 

the full absolute path name is not stored anywhere. This allows changes at the top level to be 

instantly inherited by all children. 

Unix file systems implement hard links, multiple directory entries referencing a single 

inode value. This allows the same file to appear to exist in multiple locations but in fact is 

using a single set of blocks on disk. Modifications to one file will immediately affect others. 

Inodes store reference counts so that the disk blocks are not removed until there are no more 

references. A second link type named a symbolic link is used to provide a path name-based 

link to another file. Directory entries can store mappings between names and inodes, and also 

names and other path names. When the kernel encounters a symbolic link it performs a look 

up of the link name to find the appropriate inode and then resumes the previous look up in 

progress. Since symbolic links point to paths and not inodes, a destination file can be replaced 

and all links to it will update automatically. Hard links require each link to be changed since 

the inode number of the new file is different. 
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6.4.2 Object file systems 

One problem with systems that store large collections of objects is accessing and updating 

them; the traditional approach being the use of global variables. Each module that needs to 

reference other objects must include definitions for the global variables, and suitable names 

must be used to avoid namespace collisions. Having global objects requires the compiler to 

statically declare these in advance, and hence cannot be changed at run time to suit conditions. 

To overcome this problem, systems such as dVS [GRIM91] and COTERIE [MACI96] 

implement the concept of a repository where objects can be stored for later retrieval based on 

a key. The Windows operating system also implements a registry, which is a hierarchical 

database of values stored on disk and used to configure the operation of the system from a 

central location. These runtime style storage systems can be modified without recompilation 

to store a variety of values, and do not require statically declared objects. Programmers may 

independently write modules and are only required to agree on the naming convention to 

reference the shared objects. Referencing items stored within object-oriented databases has 

also been implemented previously using query languages such as XML’s XPath [CONN02]. 

XPath allows for the searching of objects meeting some kind of criteria (similar to SQL and 

relational databases), but was not intended to be used for exact references like the Unix file 

system model. 

Tinmith-evo5 integrates a number of concepts to develop a hierarchical object store. 

Instantiated objects in the system are created in memory (statically by the compiler, or 

dynamically at run time) and then a pointer reference is placed into the object store. Rather 

than just implementing a hash of names to retrieve object pointers, the object store is based 

around the Unix file system model described earlier. Path names are used to traverse a tree of 

directories and files, and the inode values no longer point to lists of blocks but are instead 

pointers to memory addresses. These memory addresses are the locations of objects and 

method calls can then be made just like with any C++ object. Figure 6-6 depicts code 

fragments that demonstrate the storage of objects, retrieval and modification, and debugging. 

/* Initialisation code which creates and stores the object*/ 
Position *pos = new Position (); 
pos->setStorage (“/human/body/position”); 

/* Code which retrieves the object and changes it to a new value */ 
CoordLLH newllh; 
Position *update = Position::getStorage (“/human/body/position”); 
update->set (&newllh); 

/* Code which prints out the position value for debugging*/ 
Position::getStorage (“/human/body/position”)->getDebug (); 

Figure 6-6 Examples demonstrating usage of the hierarchical object store 
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On the surface, this file system approach appears to give similar results to those achieved 

with other systems using names to look up objects. The real advantages are gained when the 

Unix file system model is taken to its full extent to provide a number of interesting features. 

Hard links may be implemented by having multiple locations in the hierarchy point to the 

same object address. This allows code to use new naming conventions while still supporting 

older names for legacy source code. Symbolic links can be implemented by storing a path 

name redirection, so when the object store is traversing the internal structures it will 

recursively look up the linked path names. Symbolic links implement much of the same 

functionality of hard links, but may also be used to provide dynamic switching of objects. For 

example, if a system contains both GPS (at /human/body/gps) and vision tracking (at 

/human/body/camera), then a symbolic link can be created at /human/body/tracking that 

points to the currently active tracker. The true source of input devices may be concealed from 

the developer using symbolic links as an abstraction layer. 

During the implementation, I added several optimisations to reduce memory consumption 

and unnecessary look ups, and this resulted in the final version diverging slightly from the 

Unix file system model. Instead of hard and symbolic links, I implement copy links and 

pointer links, which have similar operations for some purposes, but some notable differences. 

Copy links are similar to hard links but do not actually share the same object pointer. Instead, 

a copy of the object is made for the link destination, and whenever the source is changed the 

object store copies the new updates into the destination object using data flow. The reverse is 

not true however, and if the destination is modified it is not copied back. These links were 

implemented using a copy since the object itself actually contains its own name and parent 

pointer. This prevents multiple names sharing the same object pointer but makes it possible 

for an object to quickly find its parent without having to traverse from the root node. Pointer 

links are the same as Unix-based symbolic links in that they store a path name redirection in 

the object store. 

6.4.3 Object hierarchies 

In object-oriented languages like C++, objects may be contained inside other objects, and 

this is referred to as composition. Figure 6-7 depicts how a simple object could be designed 

that can store a position value for a location on the Earth. In this example I use spherical 

(LLH) and grid-based (UTM) coordinates, with an object implemented to represent each type. 

These objects would also normally have methods to access the internal values and set them to 

desired values (not shown in this example). Since coordinates in both spherical and grid-based 

formats are commonly used, a Position object acts as a container for both types and keeps the 
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values synchronised using internal data flow processing. To gain access to the internal LLH 

and UTM values, external code may reference these directly if declared public or otherwise 

use access methods if declared private. 

Using the object store described previously and the example in Figure 6-6, the Position 

object could be stored at the path /human/body/position. To retrieve an object pointer to this 

object the call Position::getStorage(“/human/body/position”) is used. Using standard C++, 

pointer->getLLH() or pointer->llh can be used to access the spherical LLH values. When 

using a file system-based object store, it is also logical to store references to the child objects 

at sub paths to the parent. The spherical LLH child object can therefore be accessed directly 

using the call CoordLLH::getStorage(“/human/body/position/llh”). Both the parent and child 

objects are referenced in separate parts of the file system tree, but still remain joined together 

as a single object and so are still accessible to traditionally written code. The other advantage 

to this scheme is that since the file system is dynamic and can be traversed, child objects may 

be added or removed at run time (not just at compilation), and accessed without statically 

/* Simple angle representation */ 
class Angle { 
  double degrees; 
}; 

/* Simple distance representation */ 
class Distance { 
  double metres; 
}; 

/* For spherical Earth coordinates */ 
class CoordLLH { 
  Angle latitude; 
  Angle longitude; 
  Distance altitude; 
}; 

/* For grid based Earth coordinates */ 
class CoordUTM { 
  Distance eastings; 
  Distance northings; 
  Distance altitude; 
  int zone; 
  char letter; 
}; 

/* Container for performing conversions */ 
class Position 
{
  CoordLLH llh; 
  CoordUTM utm; 

  CoordUTM &getLLH() { return (llh); }; 
  CoordLLH &getUTM() { return (utm); }; 
}; 

Figure 6-7 Simplified layout of composite Position class, showing nested objects 
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compiled names. Code can discover and access the contents of objects easily, allowing the 

writing of very generic code. Given a Position object, the call pointer->getNode(“llh”) can be 

used to dynamically retrieve the LLH child object from the parent. While objects added at run 

time are not visible to standard C++ code, dynamic access, serialisation, and callbacks are 

fully supported. 

Many OO-based languages implement containers to store objects based on a key: C++ 

implements STL hashmap, Java implements HashMap, and SmallTalk implements 

Dictionaries. Some systems have been implemented that use containers to implement 

hierarchical structures of stored objects. An alternate implementation is to use the entire path 

as a single key, but this is not hierarchical storage. All of these implementations are different 

from my object store because they only store pointers to an object but do not handle the child 

objects contained within. Languages such as Java and SmallTalk support the run time 

discovery of child objects but the use of a consistent file system approach for all levels of the 

hierarchy is not performed. The file system approach is even more useful in languages such as 

C++, where run time discovery is not normally available. 

6.5 Implementation internals 

The Tinmith-evo5 architecture is implemented in C++ to allow for an efficient 

implementation of the software. There is very limited run time support (avoiding features 

such as garbage collection) to hinder performance and compilers can generate optimised code, 

making it ideal for machines with limited resources. The C++ language does not provide 

some of the features needed for the implementation of the desired software architecture, so 

extra code is supplied to provide these. This section describes some important implementation 

details for the software architecture. 

6.5.1 Class definition and code generation 

C++ is a statically compiled language that provides object-oriented programming with 

inheritance, support for templates, and a macro pre-processor. Each object that is a part of the 

software architecture is required to inherit the abstract class Storable to provide interfaces that 

the object store and serialisation components require. A custom developed code generator 

TCC is used to generate internal information for each object. The Storable class uses this 

generated information to provide the discovery of internal objects, with the standard C++ 

RTTI functionality being too limited to use. A sample C++ object for an InterSense IS-300 

tracker is demonstrated in Figure 6-8, with object and method declarations depicted. Special 

wrapper macros are used to indicate callback functions and internal variables that should be 
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processed. These macros pass through during C++ compilation but are used by TCC to easily 

find the desired values without having to write a full C++ parser. The code generation is 

performed automatically because it is tedious and error prone for humans to do this by hand. 

When internal changes are made, TCC is used to regenerate the derived code in a separate file 

which is hidden from the programmer. Separate definition files (such as used by CORBA and 

SUN RPC) are not transparent and require the programmer to keep the definitions 

synchronised with the implemented source code. 

Figure 6-8 depicts statically compiled methods such as getOrientation() and getMatrix() 

that are used to access internal values in the object. Inheriting the Orientationable and 

Matrixable interfaces in the class implements polymorphism and the use of the class as a 

generic tracker. The internal Storable methods getVarList(), getVarType(), and 

getVarPointer() are used for the run time discovery of object contents, providing similar 

functionality to SmallTalk and Java. The getNode(“name”) method is implemented by 

Storable and can be used to traverse to children objects, and is also used by the object store. 

The use of these method calls does add small overheads for look up against internal object 

tables, but only has to be used when static references are not possible. 

This object discovery mechanism is used to automatically implement serialisation 

functions. Storable implements toXml() and fromXml() methods that can write out objects in 

an XML format that is human and machine readable. An alternate format is with the 

toBinary() and fromBinary() methods that use a compact binary representation in an endian 

neutral format. An important limitation of serialisation is that it cannot handle process specific 

class IS300 : public Storable, public Orientationable, public Matrixable 
{
#define STORABLE_CLASS IS300  // Declare class name 
#include “interface/storable-generic.h” // Include customised template code 

public:    // Declare callback using macro wrapper 
 GEN_CALLBACK_H (IS300, process_device, IOdevice, calldev); 

 Orientation *getOrientation (void); // Implement orientationable interface 
 IS300tracker *getIS300tracker (void); // Access custom IS300 values 
 Matrix  *getMatrix (void); // Implement matrixable interface 
 RateTimer *getRateTimer (void); // Implement statistics interface 

 IS300 (IOdevice *in_dev = NULL); // Constructor with input I/O source 

private:    // Process dependent variables 
 IOdevice *device;  // Device pointer, not serialised by TCC

 TCC_OBJ (Orientation, ori); // Serialised orientation object 
 TCC_OBJ (IS300tracker, is300); // Serialise IS300 values 
 TCC_OBJ (RateTimer, rt); // Serialise statistics information 
 TCC_VAR (double, value); // Serialise C double value 
};

Figure 6-8 Edited extract from the is-300.h orientation tracker C++ definition file 
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values such as file descriptors or graphical handles, and so these must be implemented using 

manually written code. To give an indication of how data is serialised into XML format, an 

example is depicted in Figure 6-9. While this figure is very verbose and human readable, the 

data can be compressed considerably by removing white spaces and using shortened 

representations of the reserved words. 

6.5.2 Callback propagation 

The data flow model described previously is implemented using pointer-based method 

callbacks. Instead of statically defining specific methods to be called when an event occurs, a 

pointer to any method defined with GEN_CALLBACK_H may be used. A single callback 

may listen to a number of event sources and a pointer to the modified object is passed as an 

argument to delimit between many objects. These callbacks are simple and efficient to 

perform since they involve a pointer dereference and then a function call, which is only 

slightly more overhead than using static function calls. 

When a callback is attached to an object, it will be notified whenever the object or any of 

its children are changed. When an object is modified it will execute the handlers attached at 

that level of the object store, and then work up the hierarchy of the object store executing 

handlers until it finds an object that is not contained within a parent object. The execution of 

callbacks is automatically implemented for copy and set operations using C++ operator 

<object name="is300-0" type="IS300" clock="890038"> 
  <object name="rt" type="RateTimer" clock="-1"> 
    <variable name="clk" type="int">-1431655766</variable> 
    <variable name="update_count" type="int">19</variable> 
    <variable name="update_rate" type="double">20.98531028</variable> 
    <variable name="update_last" type="Clock">1077187203664933</variable> 
    <variable name="rate_last" type="Clock">1077187202920785</variable> 
  </object> 
  <object name="ISdata" type="IntersenseTracker" clock="-1"> 
    <variable name="__tcc_none__" type="int">-1431655766</variable> 
  </object> 
  <object name="ori" type="Orientation" clock="889443" master="aero"> 
    <object name="aero" type="Aerospace" clock="889313"> 
      <object name="roll" type="Angle" clock="889310"> 
        <variable name="hemisphere" type="char">00</variable> 
        <variable name="value" type="double">-37711.72142</variable> 
      </object> 
      <object name="pitch" type="Angle" clock="889311"> 
        <variable name="hemisphere" type="char">00</variable> 
        <variable name="value" type="double">51335.82573</variable> 
      </object> 
      <object name="heading" type="Angle" clock="889312"> 
        <variable name="hemisphere" type="char">00</variable> 
        <variable name="value" type="double">541499.4141</variable> 
      </object> 
    </object> 
  </object> 
</object> 

Figure 6-9 Complete XML serialisation of the IS-300 orientation tracker object 
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overloading, so the programmer does not need to be aware of this mechanism. For objects 

containing internal C++ values, these must be stored privately and wrapper methods written 

that generate callbacks. Figure 6-10 is a code fragment depicting how callbacks can be 

configured and then executed. The first set of code retrieves an object pointer from the object 

store and then uses the setHandler method to specify the callback method. The second set of 

code uses access methods to modify the internal values individually. The disadvantage to 

updating in this way is that callbacks are propagated for each modification and there is no 

way to indicate to the system that changes may be performed as a single unit (the programmer 

never calls an update method). The faster and preferred method depicted in the third set of 

code is to declare a new temporary object and initialise the values to those desired. The 

temporary object does not generate callbacks during initialisation, the data is copied using an 

overloaded equals (=) operator, and only a single callback is executed for the entire copy. 

Temporary objects are used in tracker abstractions to read incoming data, with only the latest 

version being copied over. This reduces the amount of callback traffic in the system and helps 

to improve performance. 

The callback system and the object store are tightly integrated, with callbacks being 

propagated up the tree until a top-level container object such as /devices/trackers/gps is 

discovered. The path /devices/trackers is simply a set of empty paths used to contain objects 

and does not implement any object interfaces as such. This propagation of callbacks to parent 

objects is useful for when objects need to listen on areas of the object store but do not want to 

attach to individual objects since they may be transient. An example is an object listening on 

the entire scene graph for changes to distribute to other machines. 

6.5.3 Distributed processing 

In most applications, a single non-threaded process is used as an execution container for 

objects to be connected together via data flow and callbacks. It may however be desired in 

/* Find source object and attach destination callback to listen for changes */ 
Position *source_position = Position::getStorage (“/devices/trackers/gps/pos”);
source_position->setHandler (dest_position->process_position); 

/* Make changes to source value – 3 separate callbacks generated */ 
source_position->setLatitude (138.00); 
source_position->setLongitude (34.00); 
source_position->setAltitude (0.0); 

/* Make changes to source value – efficient single callback */ 
Position temp (138.00, 34.00, 0.0); 
*source_position = temp; 

Figure 6-10 C++ code demonstrating setup and execution of callbacks 



Chapter 6 - Software architecture 

165

some cases to distribute the application across separate processes running on a number of 

computers. Objects are placed into execution containers (Unix processes, not threads) and 

connected together using the network distribution technique described previously. Each 

execution container has its own memory and code, and may contain internal threads although 

these are discouraged. The communication within an execution container is performed using 

local callbacks, but these do not work across containers in different address spaces. The 

network distribution mechanism described previously is used to connect together execution 

containers so that they can communicate with each other. 

Each execution container implements a NetServer object that listens for incoming 

connections. Clients connect to the server and make requests to listen to particular object 

paths. The NetServer object attaches itself to these objects in the object store, and when they 

change the NetServer will be notified. When the notify callback is executed, the NetServer 

object takes the updated object pointer and serialises it into XML or binary format depending 

on the client’s request. The client receives this stream of data and then deserialises it into an 

equivalent matching object created previously and stored locally. When the value is copied 

into the local object, other processing objects that are listening to this local object will receive 

a newly generated callback and the data flow process continues. With this mechanism objects 

can be easily separated into arbitrary execution containers. 

When updates are made in large trees such as the scene graph, the amount of data 

generated can be quite large although there are only a small number of changes. The XML 

format allows differences to be sent that only contain the changed data. Each object records 

an incrementing serial number to keep track of the last object version sent so the server can 

send correct differences to the interested clients. Since the binary protocol is a fixed format it 

does not support varying differences. The type of protocol used also affects the choice of 

network transport. UDP is high speed, connectionless, has a 64kb packet length, possible loss 

of packets, and may arrive out of order. TCP is slower, maintains a connection, has virtually 

unlimited transmission sizes, and guaranteed transmission of data. UDP with binary mode 

may be used for absolute updates where lost packets do not need to be recovered, such as 

head trackers. TCP with XML is used for communicating with the server and testing for 

connectivity, and for data that cannot be lost, such as object differences of scene graph 

updates. The requesting client can specify the format to use during the connection setup, and 

can switch protocols if needed. 

To test update latency, each of the network transports were tested over both wired and 

wireless networks with XML encoded objects. Table 6-1 presents the results of three Tinmith 
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benchmark applications running - a server generates an object containing a continuously 

changing time stamp of the current clock; a client on a remote machine receives this object 

via updates sent over the network and makes it available to others; a client running on the 

original server machine receives the first client’s object and compares the time stamp in the 

object against the current system time. This configuration has the effect of testing the total 

amount of time that it takes for an update to be sent round trip, and does not require the 

remote machine to have a synchronised clock. The time stamp values were obtained in micro- 

seconds using gettimeofday() calls under Linux, and the accuracy of these results is affected 

by unknown system call overheads, kernel timer granularity, other processes on the system, 

and other network traffic. The results show an obvious improvement in latency when using a 

wired network, and as expected UDP has the best latency. For the wireless results however, 

the performance of TCP was slightly better for the minimum and average cases, while the 

maximum time was double. The cause of this anomaly is probably a result of the operating 

system or bursts of traffic on the wireless network. In all configurations, the typical latency 

introduced is quite small and acceptable for interactive applications. 

Network Protocol 
Minimum 

Time 
Average 

Time 
Maximum 

Time 
Local Method 
Callbacks 

Methods ~0 µs ~0 µs ~0 µs 

100 mbps 
Ethernet 

UDP 1085 µs 1220 µs 4210 µs 

100 mbps 
Ethernet 

TCP 1160 µs 1345 µs 5020 µs 

10 mbps 
Wireless 

UDP 7240 µs 21040 µs 122925 µs 

10 mbps 
Wireless 

TCP 6160 µs 17795 µs 221995 µs 

Table 6-1 Approximate round trip delays experienced for network serialisation 
Minimum 50 packets sent in XML format over 10 mbps wireless or 100 mbps ethernet 

An object inside a server execution container is owned and updated by that container 

exclusively. The execution container makes this object available for other objects (both local 

and remote) to receive updates for further processing. The data flow approach can support 

circular flows of data, but is generally avoided unless one of the objects contains a mechanism 

to end processing and not continually propagate in an infinite loop. Alternatively, a client can 

connect in and upload a new value for the server to store, and it will remain until replaced by 

whatever source originally generated it in the server. Uploading values is not generally used 

but can be used to control internal values of an application such as user interface controls that 

are only periodically changed. 



Chapter 6 - Software architecture 

167

6.5.4 Threads 

In most cases, execution containers do not require the use of threads to perform their 

processing of data flows. Data flow calculations tend to be very sequential and most libraries 

implement thread safety using a single lock, forcing most operations to run exclusively. Since 

the display depends on all calculations being completed it must be performed last and so 

cannot be run in parallel. While some calculations may be parallelised, the benefit is small 

considering the added costs of context switching and the complexity of implementing multi 

threaded libraries using locking. The programming model is therefore designed around the use 

of a single thread of control within an execution container to simplify the design of the 

system. While many calculations complete quickly, others such as video capture and vision 

tracking (as used in Tinmith-Metro) require longer periods of time. Separate execution 

containers are preferable, but in Tinmith-Metro the video frames must be available to the 

renderer and IPC is too resource intensive so a thread is used. Since the object store is not 

thread safe, a special communications mechanism using simple locking primitives is 

implemented to pass the video frame to the main thread. 

6.5.5 Operating system interface 

The software is implemented to use standard POSIX style function calls and be compiled 

using the GNU C++ compiler. Systems that meet these requirements will be able to run the 

software, although some interfaces such as video and sound are not standardised between 

operating systems and require porting. The main development platform is Linux on 32-bit 

Intel architectures, although the software has also been compiled and tested successfully 

under FreeBSD on 32-bit Intel architectures and Cygwin on 32-bit Intel Windows 

environments. The ability to run on multiple platforms is useful when using custom wearable 

hardware with a specific fixed operating system. 

The data flow model used by the software architecture is not supported directly by any 

operating system and so a suitable abstraction layer is required. Unix operating systems that 

are POSIX compliant generally provide a file-based interface to all devices in the system, 

with open(), read(), write(), ioctl(), and close() system calls. A generic set of classes are 

provided to interface to these calls for devices such as serial ports, disk files, TCP sockets, 

UDP sockets, and generic file descriptors. The global I/O manager object keeps track of all 

file descriptors in use and generates data flow events when they become ready for reading or 

writing. Non-blocking I/O is used with a select() processing loop to allow a single thread to 

process many I/O sources and time outs simultaneously. This is in contrast to languages such 

as Java where programmers are encouraged to use a thread for each blocking I/O device, 
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increasing overheads and requiring thread synchronisation. The I/O manager developed for 

this software architecture is similar to the concept of a kernel used in DIVERSE [KELS02] 

and VR Juggler [BIER01]. 

Rendering to the display is performed using OpenGL graphics under X Windows. When 

running on a local server, the OpenGL graphics rendering is performed directly to the 

hardware using Direct Rendering Extensions (DRI). The X Windows server is used to provide 

window handling and the management of events from the keyboard and mouse. 

6.6 Sensors and events 

Most hardware devices can be categorised depending on the style of input they provide - 

2D, 3D, digital inputs, analogue inputs, etc. Tinmith-evo5 includes a hardware abstraction 

similar to those discussed previously, although there are some differences since each 

architecture focuses on varying types of applications. The hardware abstraction is designed 

for an extensive range of trackers and input devices with a variety of representation formats 

suitable for each type of input. 

6.6.1 Tracking devices 

Tracking devices return a number of degrees of freedom, with either position or orientation 

or both depending on the technology being used. Some of these results may be absolute in 

that the values may be relative to the Earth’s coordinate system, while others return their 

results relative to the coordinate system of another device. These distinctions are used to 

categorise trackers into four separate classes: Position, Orientation, PositionOffset, and 

OrientationOffset. Each of these classes represents 3DOF information, and for devices that 

produce less DOFs some of the values will be set to a constant value. For 6DOF trackers the 

result will be split across both an orientation and a position class. Each class contains a 

number of different formats internally, and by adjusting one the data flow model is used to 

recalculate the other values automatically. 

The Position class is used to represent objects stored relative to the Earth [ICSM00]. There 

are a number of ways of storing coordinates on the Earth depending on the task. Polar 

coordinates (LLH latitude and longitude in degrees, height in metres) are used to accurately 

represent points on the Earth and do not suffer from distortions caused by curved surfaces. 

Cartesian coordinates (ECEF – XYZ in metres relative to the Earth’s centre) may be used to 

represent these points with similar accuracy, but using the centre of the Earth as the origin 

may be confusing to understand. Grid coordinates (UTM – XYZ in metres relative to an 
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anchor point on the surface, assuming a local flat Earth) suffer from accuracy degradation as 

the Earth is non-planar, but are easy to handle over short distances since the Earth appears 

flat. Each of these coordinate systems are stored within the Position class, and data flow is 

used so that when one set of values are changed the other values will be automatically 

recalculated. GPS trackers normally output LLH values and the OpenGL renderer uses 

custom UTM values described later in this section. The PositionOffset class represents 

relative position change from an absolute position. These values are stored using XYZ 

coordinates in metres and can be converted to matrices for use in the scene graph. Indoor 

trackers as well as 2D desktop mice are represented using PositionOffset. 

Orientation values may be specified using a number of different formats relative to the 

UTM surface. Euler angles are combinations of three angles applied in a specified order to 

produce a final rotation, although can be confusing due to Gimbal lock problems and the 

order of combination producing different results. Aerospace angles are defined with heading, 

pitch, and roll angles similar to those used to represent an aircraft orientation. Matrix values 

with 4x4 elements are commonly used to represent transformations in the scene graph. The 

Orientation class represents values using all three formats, and automatically recalculates the 

other values using data flow when one set of values are changed. Orientation values are 

output by most head tracking devices since they generate absolute orientation. Similar to 

previously, an OrientationOffset class represents relative orientation change from an absolute 

orientation. These values are stored using 4x4 Matrix values only since Euler and Aerospace 

angles are difficult for users to correctly combine and understand. 

The offset classes are designed for handling values relative to another coordinate system, 

and cannot be used by their own since they require a base value. Figure 6-11 depicts all of the 

possible combinations of absolute and relative values, and are implemented as overloaded 

C++ operators equals (=), addition (+), and subtract (–). While two absolute values can 

produce a relative value, it is not possible to produce an absolute value using only relative 

values.

Incoming tracker data usually requires some processing before it can be presented to the 

scene graph or other data flow objects for operations. Using the data flow model, operations 
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Figure 6-11 Mathematical operations possible between absolute and relative objects 
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such as filtering, combining degrees of freedom from multiple trackers, conversions between 

coordinate systems, and performing the mathematical operations in Figure 6-11 are possible. 

This is similar to the processing performed by OpenTracker [REIT01b]. When various 

position and orientation 3DOF classes are combined together, systems with many articulated 

parts can be described. While this combination may be performed easily using processing 

objects, it is difficult for humans to visualise the transformations involved, and so the 

demonstration section discusses the use of scene graphs to perform similar transformations. 

6.6.2 Resolution limitations 

Rendering libraries such as OpenGL are designed to render in Cartesian coordinates. While 

polar (LLH) or Earth centred (ECEF) coordinates are more accurate, grid-based coordinates 

(UTM) are used since these are most easily understood by humans who can only see a small 

and almost flat portion of the Earth. Since UTM coordinates are zone-based, the flat 

approximation may be used across the surface of the Earth without any significant loss of 

accuracy. The UTM coordinate space is quite large and for a location in Adelaide the position 

is approximately 6145000 metres north and 282000 metres east of the UTM origin point for 

zone 54H. As a user of the system moves about the physical world, the origin of the virtual 

camera moves accordingly and the OpenGL matrices that perform the rendering will be 

recalculated. If the user is a large distance away from the UTM origin (such as in Adelaide 

and most other places) these values may become very large and begin to exceed the range of 

the internal floating point values in the transformation matrices. The accuracy of these 

matrices is dependent on the OpenGL implementation and the internal floating point 

Figure 6-12 Distorted view of Tinmith-Metro showing improperly placed avatar objects when 
the resolution of OpenGL’s internal values is exceeded 
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representation used, typically 32 or 64 bits in size. While the programmer may take care to 

ensure the position transformation is within the accurate limits, when it is combined with 

other internal matrices in the OpenGL pipeline it may temporarily exceed the accuracy 

possible. Millimetre accurate detailed objects such as the cursors will shake and distort, and 

the user’s avatar body will contain distorted and shifted parts, as shown in Figure 6-12. The 

effects are most noticeable in the north direction since this value is an order of magnitude 

greater than east and so the effects are magnified accordingly. 

To overcome these effects, the rendering system and the Position class work together to 

produce a new dynamic coordinate system with an origin that is closer to the area the user is 

operating in (typically within a few hundred metres). UTM coordinates represented in local 

coordinates are much smaller (in hundreds instead of millions of metres) and the Position 

class is called by the scene graph to translate LLH, UTM, and ECEF relative objects into this 

special coordinate system for rendering. This translation operation is completely transparent 

to the user and is only apparent when debugging the internals of objects. The local coordinate 

anchor is typically encoded into a configuration file or initialised at system start up, and may 

be moved to different locations when required, although this is processor intensive since 

every transformation matrix must be recalculated to use the new coordinate system. The local 

coordinate system does not require changes unless the user moves tens or hundreds of 

thousands of metres from the origin. Using this technique, it is possible for the system to 

operate over very large coordinate spaces while still handling finely detailed objects. This 

gives a large dynamic range of operation which is not possible using standard UTM 

coordinates.

6.6.3 Input devices 

Discrete events are handled differently in the data flow model due to their non-continuous 

nature. There are a number of types of button presses to handle, some examples being mouse 

buttons, keyboard buttons, and glove pinches. All inputs are described using a keyboard 

model, where the object stores an identifier for the last button activated with a press or release 

action. The identifier may be either an ASCII character code or an extended enumerated value 

for mouse buttons or glove fingers. Processing objects may listen for input device events and 

receive notification when they occur. Callbacks must process each event as they arrive and 

multiple events are executed as individual callbacks. 

Keyboards directly map to the event model with either ASCII codes or enumerated 

constants representing inputs such as function keys, escape, and arrow keys. Mouse input 
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devices are actually implemented as two separate devices in one, with the 2DOF motion 

represented separately using a PositionOffset object. Each mouse buttons maps to enumerated 

values such as Button1, Button2, and Button2. The glove input device is similarly two input 

devices, with the 6DOF tracking of the hands represented by PositionOffset and 

OrientationOffset classes. Each finger press is represented using enumerated constants such as 

LeftFinger1 and RightFinger4. Using processing objects, tracking and finger presses from the 

gloves can be converted into a virtual mouse with button clicks very easily. 

6.6.4 Simulators and debugging 

Software development is performed indoors using desktop environments and the various 

tracking devices that are used for interactive applications may not be easily available. For 

these scenarios, using simulated tracking devices is desirable to speed up development time 

and allow testing using repeatable fixed inputs. Instead of reading from a serial port or 

network, a simulator generates data or reads it from a text file. Simulator objects may be 

provided for any part of the object flow – for example, IOdevice simulators are used to 

provide raw data to test parsers, and Position simulators are used to test the user moving in the 

scene graph. 

6.7 Rendering 

A major core component of the software architecture is the rendering system. The renderer 

is a hierarchical scene graph with a structure similar to that of Open Inventor [STRA93] or 

IRIS Performer [ROHL94], with 3D geometry controlled by nested transformation nodes. The 

scene graph is implemented using similar object designs as any other part of the system, and 

so when changes are made these can be distributed across a network to share the scene graph 

with other applications. This design is similar to Coterie [MACI96] and its implementation of 

Repo-3D [MACI98] using a distributed shared memory. This is in contrast to the 

implementation of Studierstube [SCHM02] where the scene graph is the core of the system 

and applications are implemented around this. 

6.7.1 Scene graph implementation 

A number of primitive objects such as spheres, cones, cylinders, polygons, and triangle 

meshes are supported as objects in the scene graph. Each object contains specific information 

(number of facets, position, and rotation), a local transformation, a set of styles defining 

colour and texture, and a polygon cache for OpenGL. When changes are made to the object or 

its parent, it is marked as being dirty and during render time a set of polygons representing the 
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object will be calculated and stored for future use. Each object implements methods to 

perform rendering and the scene graph uses these to display the contents. The Group3D object 

does not render any polygons but can be used to encapsulate a number of children and apply 

transformations to them. When the transformation of a parent Group3D node is changed then 

all children will automatically inherit this change. 

Since nodes in the scene graph inherit the same interfaces as any other data object in the 

system, they can be used to provide data for processing objects and store output data values. 

The transformation matrix in a Group3D node may be linked up to a tracker output so that as 

the sensor moves the objects underneath in the scene graph will move accordingly. Using a 

hierarchical model of the body, various tracking devices can be attached to different parts of 

the body to produce articulated models that match the physical world. Since the scene graph is 

also contained within the object store, each node can be represented using the file system 

notation described previously. For example, the thumb on the body of a human avatar can be 

referenced using the file system path /world/models/user/torso/left_arm/elbow/wrist/thumb, 

which is very logical and easy to understand. Scene graph objects also implement the standard 

serialisation interface, and so 3D models are defined using an XML style syntax similar to the 

X3D standard [WEBC02]. Nodes may also be instantiated from VRML and Inventor format 

files, although the internal hierarchies are not visible to the rest of the system. Since scene 

graph objects are just like any other object, it is possible for the entire object store to be 

written to a single XML file. Tight integration with the rest of the system means that 

everything is handled consistently. 

6.7.2 Constructive solid geometry engine 

An integrated part of the scene graph is a real-time constructive solid geometry engine, 

implementing the geometric operations described in Chapter 2 and Chapter 4 as an object 

named Csg3D. The Csg3D object is attached to two input selection buffers (which can be 

either single objects or entire hierarchies) and listens for update events. When an input object 

is moved or changes, the Csg3D object performs the CSG operation on the two inputs and 

generates an output mesh that can then be rendered in the scene graph (while the inputs are 

hidden). The CSG engine is capable of operating in real-time so that the user can manipulate 

the input objects and see the final output immediately. 

The CSG engine operates on the facets that are defined by the input objects. While it might 

be preferable to use mathematical surface equations to represent each object, these are not 

easily definable for arbitrary mesh objects. Since the operation is required to work with 
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polygons and no loss of detail, it cannot be resolved using either ray-tracing or voxel 

techniques. To perform a real-time CSG operation, an algorithm based on the work described 

by Laidlaw et al. [LAID86] is used. Each input object (or selection buffer) is broken down 

into a list of polygons and then the polygons in each object are subdivided by each polygon in 

the other object. The new subdivided meshes can contain potentially up to the square of the 

number of input polygons, with the complexity increasingly rapidly for highly detailed 

shapes. Each polygon is then tested against the other input object with the desired Boolean 

operation and accepted or rejected for the output. The final resulting mesh contains polygons 

from both inputs and is then processed to recollect back together facets that were subdivided 

but unmodified to reduce the polygon count. The polygons are then transferred back into a 

structure resembling the input hierarchies previously used and then stored, ready for rendering 

or further processing. While this process is computationally expensive, it still executes at 

interactive rates under manipulation for most objects (such as boxes), unless objects with 

hundreds of facets arranged at many angles are used (such as spheres). This dissertation 

contains a number of examples of the CSG engine used for carving, with the previous Figure 

4-24 and Figure 4-25 from Chapter 4 depicting an object that has been carved multiple times, 

even splitting it into multiple parts. This CSG engine implementation is capable of performing 

operations on any surface that is fully enclosed. 

6.8 Demonstrations 

The software architecture has been used to implement the Tinmith-Metro modelling 

application described previously in Chapter 5, but there are many other features that are not 

directly noticeable by the user that demonstrate powerful capabilities of the software 

architecture. This section describes the following features: an NFS server implementation, the 

use of the scene graph as a calculation engine, interfaces to the DIS protocol, the 

implementation of user interface components, and testing on miniaturised hardware. 

6.8.1 NFS server 

This chapter has introduced the mapping of file system semantics to an object store for the 

retrieval and storage of objects in memory. As a demonstration of the capabilities of this 

object store, I have integrated a Network File System (NFS) server into the Tinmith-Metro 

application. The NFS protocol was first introduced by Sandberg et al. from Sun Microsystems 

[SAND85] to provide remote file system capability over a network. A client machine can 

mount drives located on a server and make directories and files appear to the user as though 

they are stored locally. NFS operates using remote procedure calls (RPC) over UDP packets 
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and defines procedures to support primitive file system operations such as lookup, create, 

remove, getattr, setattr, read, write, rename, link, symlink, readlink, mkdir, rmdir, readdir, and 

statfs. As a user browses the file system, the operating system’s virtual file system (VFS) 

layer generates RPC requests to the NFS server. The NFS server processes the operation and 

then generates a result that is then sent back to the client machine and presented to the user. 

The original NFS server implementation provided by Sun Microsystems is a user-level 

program that processes each RPC request and reads the local file system to generate 

responses. I have implemented a service inside the software architecture that implements the 

same RPC requests but maps these to the object storage system. When the client requests 

information about a file, the server traverses the object store and generates artificial 

information such as permissions, inode values, and sizes based on the type of the object found 

and its contents. Read requests on a virtual file will receive an XML representation of the 

object currently in memory, and write operations may be used to modify the values within an 

object. This NFS server implementation allows external applications to share data with 

Tinmith-evo5 applications without using the NetServer interface described previously. 

Applications implemented separately may read and edit objects using standard file system 

interfaces if desired, simplifying integration with Tinmith-evo5. Another use of the NFS 

server is to support powerful debugging using standard Unix shell scripting tools, which 

would be extremely difficult within a debugger. The generation of artificial file systems based 

on data structures is also used as a debugging and status feature in the Linux kernel, with the 

implementation of the proc [PROC03] and devfs [GOOC02] file systems. The NFS interface 

needs to be explored further in the future to better understand what extra capabilities are now 

possible.

6.8.2 Scene graph trackers 

When developing interactive 3D applications, each tracking device operates in a different 

coordinate system depending on the placement of the sensors and transmitters. Converting to 

a common coordinate system may be performed mathematically by applying 4x4 

transformation matrices to 3D values. Performing these calculations manually can be difficult 

and time consuming, and so scene graphs were developed to provide an abstraction that can 

handle this automatically. Figure 6-13 shows a sample VR view of the Tinmith-Metro 

application, with the world as well as an avatar to represent the user standing on the 

landscape. The parts of the user’s body are defined as a collection of cylinders, but each is in 

coordinates relative to their adjoining parts. For example, the torso is the main cylinder, and 

the upper arms, upper legs, and neck are attached to this. The lower arms are attached to the 
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upper arm, the hands are attached to the lower arms, and similarly for the legs and feet. The 

view frustum representing the user’s field of view is attached to the head, which is relative to 

the torso. To make the avatar model mimic the human in the physical world, scene graph 

nodes are configured to listen to updates from tracking devices. For example, a GPS position 

tracker is attached to the torso and an IS-300 orientation tracker is attached to the head. As the 

GPS tracker is moved about the physical world, the entire body of the avatar will move about 

the virtual world. When the IS-300 is rotated, the head as well as the view frustum of the user 

is rotated to match. Performing this direct linkage between tracker and scene graph objects is 

very easy and intuitive since there is no need to deal with complex angle or matrix operations. 

Any transformations that need to be applied (such as a 90 degree offset or inversion) can be 

described in the scene graph itself, avoiding the need to implement extra external objects to 

process the tracker data directly. 

The thumb tracker described previously in Chapter 5 is also implemented using the scene 

graph. The coordinates returned by the ARToolKit libraries (described further in Chapter 7) 

are relative to the camera and require further processing to calculate world coordinates. By 

attaching the thumb tracker to a node relative to the avatar’s view frustum, the scene graph 

can render 3D cursors at the appropriate location in world coordinates. As the user rotates 

their head around, these cursors will always be shown at the correct position relative to the 

avatar’s body. An interesting feature of the scene graph is that any of the nodes may also be 

used as a source of information for other objects to listen to using data flow. The 2D cursors 

on the display in Chapter 5 are implemented by listening to the final 3D transformation of the 

cursors relative to the head and then projecting these to draw a 2D cursor, independent of the 

scene graph. In this example the scene graph is being used as a kind of calculation engine to 

perform most of the difficult calculations with the final value being extracted out and used 

Figure 6-13 User is represented in the 3D world with a hierarchical avatar model 
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separately. The scene graph allows the graphical specification and preview of transformations, 

and the rendering can be disabled once debugged and if the results are only exported to other 

objects.

6.8.3 Indoor ceiling tracking 

The concept of a scene graph calculation engine is used extensively in an indoor position 

tracking system being developed [PIEK03e] [PIEK04b]. This tracker is designed to be cheap 

and simple to deploy, using cameras mounted on the backpack to track fiducial markers 

placed on the ceiling using ARToolKit, as shown in Figure 6-14. Although most of the 

research performed for this dissertation is outdoor-based, being able to walk indoors and 

perform similar modelling operations is also desirable. 

This prototype tracking system incorporates two shoulder mounted cameras (facing 

forwards and backwards at 45 degree elevations) as well as the existing video overlay head 

camera. The video cameras capture images of the fiducial markers mounted to the ceiling. 

Each marker is stored as a translation from an origin point in the room, as well as an 

orientation from the ceiling and the various walls. With the ARToolKit returning 4x4 

transformations of the markers in camera coordinates, these can be transformed into world 

coordinates by using the existing information known about the markers. Each room and the 

markers contained within are modelled in the scene graph, and by attaching the 4x4 

transformation to the marker the world coordinates for the camera can be calculated. The 

results measured by the three cameras will each be different due to their different locations on 

the body, and so they must first be transformed into the same coordinates. Using a simple 
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Figure 6-14 Indoor tracking system with backpack, head and shoulder mounted video 
cameras, GPS antenna, and fiducial markers on the hands, walls and ceiling 
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average without transformations is not feasible since the cameras are separated and not all 

tracking at the same time. Another problem is that while the shoulder cameras are rigidly 

mounted, the head camera is articulated on the user’s neck. Since the orientation of each 

camera is computed using ARToolKit, a fixed transformation can be applied to the shoulder 

cameras to find a point on the torso of the user. For the articulated head, a transformation is 

applied along the direction of viewing to the centre of the head, and then a further transform is 

applied from the joint in the neck to reach a similar torso point as before. 

Using the scene graph with graphical visualisation makes the understanding and 

specification of the transformations relatively simple compared to modelling it with matrices. 

The scene graph takes inputs from the cameras, transforms them into similar positions, and 

returns these back as data objects. These data objects are then input to an averaging filter 

object that produces a final tracker value in world coordinates. This tracker produces output 

using the same coordinate system as the standard GPS tracker, and so can be easily integrated 

with the existing tracking system. An object monitors the indoor roof tracker and GPS 

receiver, passing on a final computed position to the scene graph based on these two inputs. 

6.8.4 DIS protocol support 

The original DIS protocol based collaboration work performed previously [PIEK99c] has 

been rewritten for this new software architecture. Entity state updates arriving from the 

network contain a unique set of identifier values (such as site, host, and entity id) to separate it 

from other entities. Instead of having a separate internal list of objects, the scene graph is used 

to represent each entity at a path location such as /models/world/dis/S#/H#/E#, where S# is 

the site id, H# is the host id, and E# is the entity id. As the position and orientation values are 

extracted from the DIS entity state PDU packet [IEEE93], they are converted into a 6DOF 

matrix and then pushed directly into the scene graph. This method treats the DIS update the 

same as a tracking device, with the numeric id values used to directly identify the correct node 

in the scene graph. Each entity can be represented using a 3D model for realistic rendering 

and updated in real-time as packets arrive. Examples of the DIS protocol support are 

described further in the appendix of this dissertation. 

6.8.5 User interface 

The command entry system described in Chapter 5 is implemented as a nested series of 

menu objects contained within the object store. The hierarchical nature of the object store is 

also used to represent the arrangement of the menu nodes, and any node in the menu can be 

referenced using a file system path. These menus are defined separately from the 
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implementation and are interpreted dynamically so they can be rearranged without modifying 

the source code. Menu nodes are defined to be either of an action or selection type and are 

connected together using the storage hierarchy. Action menu nodes contain a command that is 

executed internally in the system followed by a relative or absolute path name of the menu 

node to visit next. Selection nodes contain a list of child nodes to include in a menu display, 

and define a human readable label for presentation to the user. 

Figure 6-15 depicts a more detailed definition of a section of the menu previously 

presented in Figure 5-14, containing the commands assigned to some menu nodes and the 

node that will be visited next. Other nodes not showing commands are selection nodes that 

present the child nodes as choices to the user. Since command nodes cannot contain both a 

command and a list of children to select from, examples such as nudge execute the start 

command and then move to a child node called active which is a selection menu containing 

other children. When a selection menu node is chosen by the user, the menu processor moves 

its current traversal pointer to the node and refreshes the menu with the list of the new 

children available for selection. When a command menu node is selected, the command 

execution engine takes the text-based command string and maps it to an internal method call 

on the matching Tinmith object. After the execution of the action the traversal pointer is set to 

point to the next path specified by the menu node. The MIKE system by Olsen [OLSE86] 

implements a similar idea of decoupling the definition and implementation of menus. 

+- manipulate  
  +- scalenudge (not shown) 

  +- rotnudge (not shown) 

  +- nudge start_nudge_oper((null)) >> active 
  |  +- active  

  |     +- toward add_nudge(toward) >> ../ 
  |     +- away add_nudge(away) >> ../ 

  |     +- down add_nudge(down) >> ../ 

  |     +- up add_nudge(up) >> ../ 
  |     +- right add_nudge(right) >> ../ 

  |     +- left add_nudge(left) >> ../ 

  |     +- cancel cancel_nudge_oper((null)) >> ../../../ 

  |     +- ok commit_nudge_oper((null)) >> ../../../ 
  +- scale start_scale_oper((null)) >> active 

  |  +- active  
  |     +- cancel cancel_scale_oper((null)) >> ../../../ 

  |     +- ok commit_scale_oper((null)) >> ../../../ 

  +- rotate start_rotate_oper((null)) >> active 
  |  +- active  

  |     +- cancel cancel_rotate_oper((null)) >> ../../../ 

  |     +- ok commit_rotate_oper((null)) >> ../../../ 
  +- move start_move_oper((null)) >> active 

      +- active  
         +- cancel cancel_move_oper((null)) >> ../../../ 

         +- ok commit_move_oper((null)) >> ../../../ 

Figure 6-15 Partial layout of manipulation menu, with internal commands and next path 
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6.8.6 Miniaturised hardware 

One of the goals of the software architecture was to be able to develop applications for a 

wide range of computers. Currently the main demonstration applications operate on a 

Pentium-III 1.2 GHz laptop with an NVidia GeForce2 OpenGL video accelerator. In the 

future, I would like to use Tinmith-evo5 applications on smaller laptops and hand-held 

computers that have less processing power than I am currently using. To verify performance 

on slower and less capable hardware, the testing platform used is based on a Pentium-I 133 

MHz embedded computer with 64 mb of memory and a Chips and Technologies 65555 2D 

video chipset. This older platform serves as a guide on whether these goals are achievable 

without requiring a major investment in porting the software to a new platform. With current 

hand-held computers approaching the capabilities of older processors, this is a very suitable 

test case that is easy to implement. As proof that this is possible, Wagner and Schmalstieg 

have demonstrated ARToolKit and OpenGL running on a small hand-held system 

[WAGN03]. 

Since the slower testing platform has the same processor architecture as the main platform, 

the software requires no changes to be compiled. Initially tested were applications that do not 

perform any rendering, such as the tracker driver for the ARQuake system described in the 

appendix. For these applications, there is no noticeable performance difference compared to a 

faster machine since the task of processing tracker inputs and generating packets is relatively 

simple. This demonstrates that the software architecture can operate within the limited 

processing and memory resources available for the implementation of simple tasks. 

The full Tinmith-Metro application was also tested on the slower testing platform, but 

some changes were required in order to make the software run. The C&T 65555 chipset does 

not support any 3D acceleration and so the OpenGL libraries fall back to a software emulation 

mode that is very slow and inefficient. Generating a single frame takes many seconds and so 

this is not useful as a real-time AR system. Bellard has developed a small open source 

emulation library named TinyGL [BELL02], which provides much of the functionality of 

OpenGL but leaves out many of the more complex operations such as transparency, complex 

texture mapping, and strict adherence to the specifications. This library is capable of 

providing 3D rendering with textures on very old computers, although the objects in the 

environment cannot be as complex as is possible with hardware acceleration. TinyGL was 

integrated into the system and modifications were made to support the rendering of 

transparent textures for drawing fonts and to add some OpenGL function calls that were not 

implemented. The optical overlay mode of the software was also required to be used because 
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the system is not powerful enough to handle the capture and display of video frames from the 

camera in real-time. With these modifications, the Tinmith-Metro software was able to run at 

a relatively slow rate of 2-4 frames per second at 640x480 resolution. When the application is 

profiled, the majority of the CPU time is spent inside the TinyGL code performing rendering. 

Based on these tests, OpenGL rendering is the main bottleneck affecting the performance of 

applications, and the software architecture itself has negligible overhead. Given the increasing 

number of miniaturised computers that include some 3D hardware acceleration, these 

performance problems will become negligible in the near future. 

6.9 Summary 

This chapter has described the Tinmith-evo5 software architecture, explaining the 

advantages of my integrated and uniform approach to building applications for virtual 

environments, especially mobile AR. The architecture uses a data flow methodology with an 

object-oriented design to allow applications to be implemented by connecting processing 

objects together. An object store is developed that is based on Unix file system semantics to 

provide a simple model for the storage and retrieval of objects in large and complex 

applications. Using this software architecture, a number of powerful features such as 

distributed programming, persistent storage, and run time configuration are possible. 

Components such as a scene graph, a constructive solid geometry engine, and a sensor 

processing interface are fully integrated to support the requirements of 3D virtual 

environments. The design is based on the C++ language and although the language has a 

number of limitations, these are overcome using a variety of techniques. The use of C++ 

allows the development of efficient applications that operate on a wide range of mobile 

computers. The applications described in this chapter and in this dissertation are implemented 

using this software architecture and demonstrate its usefulness for real world applications. 


