
Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Building User Interfaces With Video and 3D
Graphics For Fun and Profit!

Tutorial Notes
Linux Conf Au 2005

Canberra, ACT, Australia

By Wayne Piekarski
wayne@cs.unisa.edu.au

http://www.tinmith.net/wayne

Wearable Computer Lab
School of Computer and Information Science

The University of South Australia

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 1

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Abstract

With the availability of cheap video capture and 3D graphics hardware on most desktop
computers, we now have the ability to investigate new ways of interaction that were
previously beyond the reach of the average hobbyist at home. Rather than viewing everything
on a 2D desktop, what possibilities exist for viewing information in 3D? Instead of using a
keyboard and mouse, what other more intuitive ways are there to interact with a 3D
environment?

This tutorial gives an introduction to some of the less mainstream possibilities that are
available on your Linux PC running at home right now. Linux is an ideal platform for
performing this type of work with, since there is a wide range of existing source code which
can be extended in any way that you can imagine.

The purpose of this tutorial is to encourage developers to think of new possibilities for input
devices and user interfaces for their computers. In order to support this, I will also cover some
of the less used and understood subsystems available under Linux, including the DRI and
OpenGL 3D interfaces in XFree86, accessing video cameras using Video4Linux and the 1394
Firewire drivers, using free libraries such as ARToolkit for 3D object tracking, libraries such
as OpenCV for vision recognition, and scene graph libraries for rendering 3D graphics. Many
of the subsystems provided for Linux are not documented well and this tutorial will teach
from the years of experience that I have in this area.

Another aspect of the tutorial is how to interface custom hardware devices to your computer. I
will explain how to implement hardware interfaces using serial, parallel, and USB ports, even
for those with limited experience with electronics and no Linux kernel programming
knowledge. Finally, I will discuss some of the more exotic hardware possibilities which I
explore as part of my research, including the use of head mounted displays and wearable
computers. I will be bringing some of my research equipment to the conference for attendees
to try out themselves.

All materials for this tutorial are available on the Internet at http://www.tinmith.net/lca2005

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 2

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

License

You are free to copy the text of this tutorial and use it for whatever you wish, although you
must ensure that the original author’s name Wayne Piekarski is referenced in an appropriately
visible section.

You are free to use the examples in the tutorial text for whatever you wish. If you write an
application based on a lot of my examples or things you learned here then a mention in your
credits would be much appreciated. I make no guarantee that anything in this tutorial is
correct, and so you must use my examples and ideas at your own risk. If your application
breaks because of something you read here, you can keep both pieces – please don't send
them to me.

The source code included as attachments to the tutorial is all available under the GPL or other
open source license, and you must ensure that any applications that you develop based on
these comply with their appropriate licenses. Some of the examples were written by others
and so I do not own the copyright, but I am distributing them under the terms of their licenses
as I downloaded them from the Internet.

This tutorial is copyright © 2005 by Wayne Piekarski, all rights reserved.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 3

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Table of Contents

1 Introduction...5

2 Base system install...7
2.1 Distributions...7
2.2 Debian distributions..8
2.3 Debian limitations..9
2.4 Debian package installation..9
2.5 Other configuration...10
2.6 Special Firewire configuration...11

3 3D graphics..12
3.1 GLX and DRI...12
3.2 3D hardware..13

3.2.1 Nvidia cards..13
3.2.2 ATI cards..15
3.2.3 Other cards...16

3.3 Configuring X using xchanger...16
3.4 Programming OpenGL...17

3.4.1 Libraries...18
3.5 Live video display..20

3.5.1 Initialisation...21
3.5.2 New video frame..22
3.5.3 Render...23

3.6 Scene graphs..23
3.6.1 Coin3D..24
3.6.2 Other scene graphs..25

4 Video capture...26
4.1 Video4Linux...26
4.2 1394 Firewire...29

5 Vision tracking..32
5.1 ARToolKit..32

5.1.1 Installation and compiling..32
5.1.2 ARToolKit internal operation..33
5.1.3 Example code...33
5.1.4 Quick and dirty 4x4 matrix tutorial..34
5.1.5 Uses for ARToolKit...35

5.2 Intel OpenCV...36

6 Hardware development..37

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 4

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

6.1 Interfaces..37
6.1.1 Headers...37
6.1.2 Parallel..38
6.1.3 Serial RS-232..39
6.1.4 USB serial...42

6.2 Cheap hacks...43
6.3 Other interfaces...44

7 Conclusion..45

8 References..46

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 5

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

1 Introduction

One of the guiding principles in this tutorial is to be “lazy like a fox”. Most people are very
busy and while it would be nice to spend a lot of time on doing something perfectly, we don’t
have a lot of time free but we still have projects we would like to build. This tutorial is
designed to give a quick overview of useful technology that you can use to build projects at
home right now, with the minimal amount of work possible. While some of these
technologies are explained elsewhere, the documentation can be a bit lacking or non-existent.
While some parts will be only an overview, I will focus in detail on the areas that have
important tricks or features and may not be discussed elsewhere. This tutorial is designed to
give you useful tools so that you can begin hacking straight away. You can skip the many
frustrating hours I have spent playing around with my computers and reading obscure
documents and code trying to get things working.

While I try to avoid requiring too much previous knowledge, I will not teach things like basic
C programming or OpenGL. These things are easily learned from many other excellent
sources and so I want to focus my time on the more obscure areas. However, if you have any
C programming experience then you should be able to follow what is happening and then you
can catch up on things you missed after the tutorial.

We start the tutorial by briefly explaining how to configure a Linux distribution (mainly
Debian and its derivatives) to contain the required packages that will be needed for
development. Most modern distributions are suitable and contain pretty much everything you
need but there are a few tricks (especially with Firewire and DRI) that I will go through that
you must set up correctly and are poorly documented.

Next up is a detailed discussion of 3D graphics support with specific reference to Linux.
While many books talk about OpenGL, there is almost no discussion of how 3D is
implemented in Linux. Many people think they are running an accelerated server when in fact
it is not configured correctly and using software emulation only. I will describe how to
configure your server using my xchanger tool that I have written to simplify the configuration
of 3D hardware. From a programming perspective, I cover these important details and explain
what the various libraries do and how they are used. I discuss in some detail the use of
OpenGL to work around X11 limitations and its use for live video display. We finish off with
a brief discussion of scene graph libraries and how they can be used to simplify application
development.

The two video capture subsystems available under Linux are not commonly used by many,
and have only small amounts of documentation that describe how they operate. I will go
through in detail the use of V4L and Video1394 to perform video capture, including their
various features, problems, and examples.

One of the most exciting uses of video capture is using it to perform real time vision
recognition. There are a number of free toolkits such as OpenCV and ARToolkit which can be
used to extract out information from video in real-time. These libraries can be used to develop
exciting 2D and 3D interactive applications on a desktop without requiring expensive virtual
reality equipment.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 6

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

To finish off the tutorial, I will discuss some useful information for hackers who want to
make their own hardware. Building your own hardware opens up a wide range of possibilities
for exciting projects with your computers, such as attaching flashing lights and push buttons. I
discuss the various interfaces available such as USB, serial, and parallel ports, and how they
can be used. I have including lots of example source code to help you get started.

Overall, this tutorial contains approximately forty page of notes, numerous free sample
programs, and information which is not normally available elsewhere. I hope that you all will
take advantage of this opportunity to learn about lots of new and exciting things that are
possible with Linux. I hope you enjoy the tutorial and look forward to talking to you all at
Linux Conf Au 2005 in Canberra!

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 7

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

2 Base system install

In this tutorial we will work with some of the more obscure libraries available for Linux, and
these libraries tend to be very dynamic and change often. As a result, I would advise you to
install the latest distribution that you can get, and preferably including as many packages as
possible. While it is possible to go and download each library as a tar ball and compile and
install the sources yourself, this is quite time consuming and it is easier if a distribution can
manage as much for you as possible.

2.1 Distributions

I have used many Linux distributions over the years in my search for the distribution, and I
have found that this journey has been filled with many frustrating experiences. I originally
started with Slackware but wanted the benefits of a package management system. I switched
to RedHat for a number of years but it was hard to standardise all my systems because things
kept changing between versions and the upgrade utilities never seemed to work properly.
RedHat also didn't install the more obscure libraries that are available, and some of the
packages available in previous releases are no longer available. Furthermore, older RedHat’s
did not have any network packaging capability such as Debian’s APT, and so installing new
RPMs was always a painful experience with unmet dependencies and so forth.

Over the last two years or so, I have been testing out Debian-based systems as a foundation
for a common distribution that I can use between all my systems. I want a standard
configuration I can use on my laptops, desktops, and wearable computers, and rapidly deploy
it when a new machine arrives. I like Debian for my development work because it has a
massive number of packages – pretty much every piece of software ever written seems to be
in there somewhere. The APT program makes it very simple to download new packages and
resolve dependencies, making building applications much easier. Debian is available in three
versions: stable, testing, and unstable. The stable release is safe to use as it has been
extensively tested, but the problem is that many of the libraries and tools I require are so out
of date they are unusable. Later on we will talk about some of the problems with older
libraries that are relevant to this tutorial. While it is possible to install the latest libraries from
the testing and unstable releases, these have dependencies on other non-stable packages and
so the system ends up performing a massive update when one package is installed. This
results in a system which is no longer stable and for those who are not Debian gurus it can be
a bit difficult to fix up problems that do occur. Another problem with Debian is that it tends to
assume a reasonable amount of knowledge with Linux in order to configure the machine to
your liking. Even though I have been using Linux since 1995 and am quite experienced,
configuration files vary over time and between distributions, and I’d rather have something
that makes simple tasks quick and easy to perform so we can focus on the real work. I don't
want to spend a week preparing a new system, I'd really prefer to just drop a CD in and install
it, then add my dependencies and the system is ready to go.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 8

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

2.2 Debian distributions

My initial Debian experience was in late 2003, using the testing version. I used testing
because it had up to date versions of the packages I needed compared to the stable
distribution. Do not even try to use stable for this tutorial, everything we are using has had
large amounts of development since stable was released. I found Debian testing painful to get
started with however, configuring things like the hostname for DHCP, setting up wireless,
hunting down all the packages I needed, and generally tweaking little things took a lot of
work and involved hunting for configuration files all over the system. I was quite surprised
that these tasks were still so difficult when they could have been easily solved with a simple
GUI tool.

Then I discovered Knoppix, which seemed to be the solution to all of my problems. It was
based on Debian so it had all the nice packages that I liked, but it also seemed to be written
for users who are not technical. I like these kinds of distributions because they have nice
default configurations and simple GUI tools to configure the common things people use.
Debian seems to assume you are the author of the tool you are trying to use! Knoppix is based
on a mixture of testing and unstable packages which have been selected by Klaus Knopper
(the distribution’s author) as being suitable for release, giving us a relatively bleeding endge
system which is quite stable. When I installed Knoppix onto my IBM Thinkpad with ATI
Radeon 9000, everything including sound, video, and 3D acceleration worked straight away
without having to do anything – this is the way things should be! There is no reason that this
has to be done the hard way anymore!

Knoppix ran well for a while, but then I started running into big problems. A few months after
the install, I would go and try to install a new package I needed. This package depended on
some X library, which then needed to be upgraded. By upgrading this X library, a chain of
dependencies were unleashed and the next thing you know APT wants to change every
package in the entire system! If you let it do the upgrade then something is bound to break
and then fixing it is a nightmare. The other problem is that there was no clean way to upgrade
to the next version of Knoppix when it comes out, you have to reinstall the system. Klaus
didn't keep the deb files he used in an APT repository anywhere, so you couldn't go back to
the old packages. Knoppix was fine if you installed the latest CD and grabbed all the
packages very soon after, but over time the system becomes stale and can never be upgraded
or have new packages installed. If you risk doing an upgrade you may end up with a system
that is broken and doesn't work. In my line of work, my systems have to work and I can't risk
things breaking. I don't want to have to keep images of my hard drive laying around – that is
not the way we should be doing things with Linux!

So while I liked Knoppix a lot, it was unmaintainable for what I was trying to do. I needed
something that was well supported by the community, and that I could install once on each of
my machines and then upgrade easily and automatically in the future. So I went back to using
Debian testing and this time decided that I would have to learn about all the obscure config
files of Debian because there was no other easier way. It wasn't too bad, and now I have built
up a set of notes that I use to do all my installations. Furthermore, I have create a repository of
Debian packages which contain dependencies for all the various packages that I need. Now I
just install a base system and then my packages on top, and Debian pretty much does
everything else.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 9

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

2.3 Debian limitations

The problem with Debian testing is that it is always changing. When I did my first testing
install, within a few weeks all the kernel header includes for V4L were broken. Another time
when upgrading some X packages, two of them contained the same file and dpkg refused to
resolve the problem. These problems seem to be caused by when a file is moved from one
package to another in the unstable series, but only one package makes it to the testing series.
Packages move to the testing series within a few weeks of waiting if no bugs are filed against
them. So the problem is that testing may or may not work for you when you need it most.
Once the problem is fixed then an upgrade should fix the problem, but what if you are
installing a machine in the week when the packages you need are broken? So I see this as
being a big problem with Debian, and since stable is so old you can't use that either.

One thing I have been impressed with recently is the Ubuntu distribution. The founders of this
project have decided to build a distribution which builds on the strengths of Debian, but with
a frequent release schedule so that there is a stable target which we can build systems with.
Rather than releasing a stable system every few years (which is eons in Linux development!)
the Ubuntu people are doing a release every six months. These releases are designed to be
stable with bugs and security patches available. I have only just started using Ubuntu, and I
am very impressed with the overall system. They seemed to have learned a lot from
distributions such as Knoppix in terms of ease of configuration as well, and I think Ubuntu is
a distribution that will really make Debian usable for people like me. I am looking into
Ubuntu further and haven't tested it for a long time, so for now this tutorial will focus on
Debian testing. However, almost all the Debian examples are relevant to Ubuntu anyway.

2.4 Debian package installation

This tutorial is based on Debian testing systems which were current as of April 2005. Some of
the libraries I discuss have experienced changes recently, but hopefully these have stabilised
out.

When I build a new system, I only do a standard Debian testing base install with no extra
packages. I try to keep my systems minimal so that upgrades are much easier and quicker to
perform. I then install a series of packages from my own custom APT repository which
contain a number of dependencies on various tools that are needed for my development.
These dependencies are designed to work against a standard base install, and you may add
extras such as KDE or GNOME without any problems.

To use my dependencies, add my Tinmith APT repository to your /etc/apt/sources.list file:
deb http://www.tinmith.net/debian ./

Then, update your APT system and install my special packages:
apt-get update
apt-get install tinmith-desktop tinmith-devel

If you prefer, you may install the dependencies manually of course. I have also provided some
packages for Ubuntu that I am currently testing out. Here I will describe all of the packages
that I install and the functionality that each of them provides.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 10

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Package Name Dependencies

tinmith-desktop auto-apt, bbkeys, blackbox, coriander, cvs, emacs21, rxvt, smbclient, smbfs,
sudo, unzip, xterm, nano, zip, make, ssh, nmap, netcat, less, lynx, rsync, dpkg-
dev, g++, csh, xawtv, fetchmail, strace, ncftp, module-init-tools, gscanbus, x-
window-system-core, x-window-system-dev, gdm, xterm, manpages-dev,
dnsutils, minicom, imagemagick, xvkbd, xvncviewer, x11vnc, pptp-linux,
hdparm, cupsys, cupsys-client, cupsys-bsd, sharutils, arping, bblaunch, gdm-
themes, screen

tinmith-devel tinmith-intersense, libavc1394-dev, libdc1394-11-dev, libdc1394-examples,
libraw1394-dev, libfreetype6-dev, libglut3-dev, freeglut3-dev, libcoin40-dev,
libjpeg62-dev, libsoqt-dev, libsoqt20c102, libttf-dev, libx11-dev, libxml2-dev,
libxmu-dev, xlibmesa-gl-dev, xlibmesa-glu-dev, xlibs-dev, xlibs-static-dev,
libqt3-mt-dev, libncurses5-dev, libsvga1-dev, libmagick6-dev, gdb

tinmith-laptop wireless-tools, wavemon, pcmcia-cs

tinmith-ubuntu libasound2-dev, alsa-base, alsa-utils, alsa-oss, sox, aumix, libavc1394-dev,
libdc1394-dev, libraw1394-dev, libfreetype6-dev, libglut3-dev, freeglut3-dev,
libcoin40-dev, libjpeg62-dev, libsoqt-dev, libsoqt20c102, libttf-dev, libx11-dev,
libxml2-dev, libxmu-dev, xlibmesa-gl-dev, xlibmesa-glu-dev, xlibs-dev, xlibs-
static-dev, libqt3-mt-dev, libncurses5-dev, libsvga1-dev, libmagick6-dev, gdb,
auto-apt, bbkeys, blackbox, cvs, emacs21, rxvt, smbclient, smbfs, sudo, unzip,
xterm, nano, zip, make, ssh, nmap, netcat, less, lynx, rsync, dpkg-dev, g++,
csh, xawtv, fetchmail, strace, ncftp, module-init-tools, gscanbus, x-window-
system-core, x-window-system-dev, gdm, xterm, manpages-dev, dnsutils,
minicom, imagemagick, xvkbd, xvncviewer, x11vnc, pptp-linux, hdparm,
cupsys, cupsys-client, cupsys-bsd, sharutils, bblaunch, gdm-themes, screen,
libopenal-dev, libogg-dev, libvorbis-dev, fluxbox, aterm, wireless-tools,
wavemon, pcmcia-cs

tinmith-xchanger dialog

2.5 Other configuration

If you are not using a Debian system, it should still be relatively simple to configure your
system to get the right libraries installed. As a guide, make sure you have the following
software installed in your favourite distribution:

Development tools (GCC, G++, make)

XFree86 (Server, libraries, and development files)

DRI support for XFree86 (3D support for your graphics chipset, GL libraries)

OpenGL libraries (GLUT, GLU, GL libraries and development files)

Kernel with all modules compiled (At least 2.4 is required)

Firewire support libraries (libDC, libraw, plus kernel modules)

2.6 Special Firewire configuration

For some reason, many distributions do not come with the Firewire devices (particularly
video1394) properly configured. Also, there were two naming convention changes between

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 11

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

kernel 2.4.18 to 2.4.19 and libDC v8 to v9. Before you begin using your system, if you are
using libDC v8 I suggest that you upgrade it immediately. This version is quite old and has a
lot of bugs when dealing with multiple cameras and extra features. Version 9 and up are much
better, but I do recommend that you run the absolute latest version since the developers keep
changing the API in the library! Even worse, there are no version numbers in the header file
to allow you to use #ifdefs to write portable code, so you should try to keep up to date. I
believe now that the libDC library is stable, so hopefully there will be no more API changes
in the future. In newer kernels 2.4.19 and later, the video1394 module uses character major
171 minor 16 devices, while older kernels use character major 172 minor 0. So make sure
your devices are numbered like this accordingly. For newer libDC v9 code, the devices are
stored in a directory /dev/video1394/* whereas in the older version only a single device is
available at /dev/video1394. I have included a make_devices script in the tutorial examples
which performs auto-detection, and also some common cases below:

Kernel 2.4.22 with libDC v9 (most common case)
mknod /dev/video1394/0 c 171 16
mknod /dev/video1394/1 c 171 17
mknod /dev/video1394/2 c 171 18
mknod /dev/video1394/3 c 171 19

Kernel 2.4.17 with libDC v9 (another common case)
mknod /dev/video1394/0 c 172 0
mknod /dev/video1394/1 c 172 1
mknod /dev/video1394/2 c 172 2
mknod /dev/video1394/3 c 172 3

Kernel 2.4.22 with libDC v8 (avoid this case)
mknod /dev/video1394 c 171 16

Kernel 2.4.17 with libDC v8 (avoid this case)
mknod /dev/video1394 c 172 0

The other devices such as /dev/raw1394 are typically included by default and have always
worked for me without problems. More information on the firewire subsystem can be
obtained from http://www.linux1394.org. My tinmith-desktop package corrects any Firewire
issues for /dev/video1394 and /dev/raw1394 if they exist. Note that my scripts will not work if
you have udev installed, which is a kind of dynamic device file system.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 12

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

3 3D graphics

One of the core things we will discuss in this tutorial is 3D graphics programming. Pretty
much every example involves the display of graphics to the user, controlled via some kind of
input mechanism. XFree86 is a graphical X display server used by Linux and many other
operating systems to provide a standard way of drawing graphics to the display. Traditional X
Windows programs are written as clients, where they run on a server machine somewhere and
then send their display commands to an X server typically running on the user’s desk. This
architecture is very flexible and allows us to run applications remotely quite easily.

3.1 GLX and DRI

One limitation of the X design is that it always requires two programs to be running – the
client and the server. Even when using shared memory or local communication mechanisms
on a single processor, the client must still task switch with the server to render a display.
Performing any kind of communication to another process involves the kernel performing
switching and message passing, and both of these are very time consuming. When we need to
render millions of graphical primitives to a display, the X protocol and kernel becomes a large
overhead that prevents us from achieving the best performance. In these scenarios, being able
to talk directly to the hardware is a must.

When Silicon Graphics (SGI) designed the 3D support into their workstations many years
ago, they wanted to support the existing X protocol but extend this to support 3D primitives
as well. They developed a protocol extension known as GLX which allows the encapsulation
of 3D drawing commands over an X windows session. While GLX allows the transmission of
3D graphics over a network, there are overheads imposed by the network transport. One way
to avoid transmitting the graphics commands repeatedly over a network is to use display lists,
where the server caches geometry locally to improve performance. For geometry that is
continuously changing however, direct hardware access is still needed.

SGI developed further extensions to their X server so that if it detected the client and server
were on the same machine, it would allow direct access to the 3D hardware. The IRIX kernel
was modified to allow user land applications to safely access the 3D hardware without risking
system stability. The user land application then executes OpenGL function calls which are
then used to directly write commands into the 3D hardware’s command buffer. The video
hardware then draws this to the display and there are minimal communication and switching
overheads.

SGI later released some parts of the source code to GLX and their direct rendering extensions,
which was then used as a foundation for the Direct Rendering Infrastructure (DRI) project.
DRI is used to provide OpenGL direct rendering to hardware under Linux and XFree86, using
kernel modules to control access and XFree86 modules to provide the hardware interfaces.
While SGI supported almost all of the OpenGL command set fully in hardware, most PC
accelerator cards do not, instead relying on software emulation to fill in the gaps. The
Mesa3D libraries are also integrated into XFree86 to provide full 3D rendering functionality
for any features not provided by the hardware.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 13

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

With GLX and DRI support under Linux, writing 3D applications using OpenGL is now very
simple and easy to access by anyone with any PC and a cheap 3D accelerator card. The major
difficulty is getting 3D support to work with your particular video card and distribution. The
really nice part about the direct to hardware acceleration is that you can use it for writing fast
2D applications as well. Instead of using X server primitives, simply create an OpenGL
window and do everything directly to the hardware using the driver features provided. A good
example of this is supporting live video display: previously there were a number of extensions
developed to X such as Xvideo (Xv), MIT shared memory extension (MITSHM), direct
graphics architecture (DGA), etc, but none of them are standardised amongst all the drivers
and still are not as efficient as direct to hardware under OpenGL. Since everyone building 3D
hardware supports texture maps and OpenGL, it is a nice and portable way to write
applications that are also fast. Note that whenever I refer to XFree86, I am also referring to
derivatives such as XOrg as well.

3.2 3D hardware

Most 3D chipsets nowadays are quite powerful and able to pass the standard Quake3 test (ie,
if you can play games on it then you should be okay). Before buying a computer or graphics
card, it is a good idea to check out somewhere like http://dri.sourceforge.net and
http://www.xfree86.org to find out what the latest video card support is. Compiling your own
XFree86 or XOrg binaries based on the source available is not for the faint of heart however,
and so if want to keep things simple and get things working you should install a new
distribution or upgrade to get all the latest XFree86/XOrg packages. The other advice is that
you can sometimes be better off buying a slightly older video card (don’t get the latest
bleeding edge one) because odds are the developers have had some time to get the drivers out
for them. Since the card manufacturers do not typically provide drivers for video cards, the
DRI developers can only begin thinking about a driver once the hardware is out.

3.2.1 Nvidia cards

Nvidia produce powerful 3D graphics hardware that is capable of performing a number of
complex OpenGL functionality. While the TNT2 is a reasonably old 3D design, it is still very
capable and able to run many of today’s games at a reasonable frame rate and resolution. The
TNT2 is great for most development and you can get them for free from people throwing
them away.

The GeForce2 is a few generations ahead of the TNT2 and is capable of rendering much more
complicated models. A nice feature of the GeForce2 is it is powerful enough to support real
time video texture mapping – you can capture video data and load it into a texture in real
time, and then render it onto a polygon. This ability is what separates cheap low end cards
from the more expensive higher end cards. The GeForce2 is also a very cheap card to
purchase or acquire for free from a friend since it is also not very new. The thing to realise
with 3D hardware is that if you have a quality card, you do not need the latest release to get
good performance – they are all quite good and you only notice the difference on the most
demanding of games. For everything else it does not matter. GeForce2s and above are
available in many laptops as well, particularly larger desktop replacement units. They seem to
be less common in smaller laptops than Radeons, perhaps this is to do with different power

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 14

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

consumption. I have used Nvidia chips in Dell Inspiron 8100 and Toshiba Tecra M2/M3
laptops, and they both work absolutely perfectly. I would particularly recommend the latest
Tecra M3 model, it is very Linux compatible, the hardware is good quality, and is available
for a very competitive price.

Nvidia cards are interesting to run under Linux. Nvidia does not publically release any
documentation about their cards, and so there are no GPL drivers in XFree86 to support the
3D acceleration features. However, Nvidia do provide their own binary 3D driver that reliably
supports every 3D card they have ever made. The binary driver is wrapped up so that it can
compile against whatever distribution and kernel you are using, and I have tried it under many
distributions with only minor problems. Occasionally you will get a kernel version like 2.6.4
or broken build tools that just won't compile the Nvidia driver properly, and if you end up in
this situation then just upgrade one until you get it sorted out. Don't be tempted to play with
the problem for days and days like I did unless you have to. In my case, whenever I build the
Nvidia kernel module it would insist on rebuilding the entire kernel again! The final result
would work, but I didn't want to have to rebuild the kernel just for this. Currently I am using
kernel 2.6.8 and Nvidia driver v6111 with no problems, so if you get stuck then try this
particular combination out because I know it works. In my experience, once you can get the
module to compile and install, it will work forever. If you ever do an upgrade of your Debian
X packages, be sure to reinstall the Nvidia driver because some of the files get modified and
your X server will crash when 3D applications start up.

The Nvidia binary driver shares much of its code base with the Windows Nvidia driver, and
so the performance is excellent and all features of the card such as dual head are nicely
supported on even the latest hardware. I have used the Nvidia drivers for a number of years
and never had any problems with them, although you do read a few people on Slashdot
complaining about them occasionally. Since the drivers from Nvidia are closed source, you
cannot edit the core code which does all the magic of talking to the 3D card. However, there
is a wrapper around it which people have modified to support new kernels and so forth, so it
can be changed in some cases if needed. It can be a bit of a pain installing binary drivers,
particular under Debian which seems to go out of its way to make this more difficult that it
should be. I build and install my own kernel, and then just use the standard install file from
Nvidia to build the driver. I don't bother with the Debian packaged version for now, since it
only works with the standard Debian kernels which are not good enough for what I do.
Anyway, back to the subject of Nvidia and its closed source binaries. When I have presented
at conferences previously, you always get one or two people who get mad at you for using
binary only code and so forth. I have been developing 3D applications for a number of years,
mostly on mobile laptops, and only in the last few years has it been possible to get any decent
3D chipsets at all. So when we purchased our first Dell 8100 laptop with 3D support, Nvidia
was the only powerful hardware which had working drivers available. The equivalent Radeon
chips of the time still had very beta and buggy drivers, and were not useable for our work.
The people who fund our work want to see demonstrations, and so we had no choice but to
use the Nvidia drivers. In the next section I will discuss ATI cards though, which have now
matured to a better state, although I still think the Nvidia drivers are much more reliable and
stable.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 15

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

3.2.2 ATI cards

ATI are the main competitors to Nvidia and produce 3D graphics hardware with similar
capabilities. I have probably slightly more experience using Nvidia chips than ATI, although I
have quite a few ATI based laptops and I will discuss these experiences. From what I have
read, a Radeon chipset is slightly better than a TNT2, and a Radeon 7500 is slightly better
than a GeForce2, so if you want to do intensive operations like live video texture mapping
then go for at least a Radeon 7500 or above. Other older cards like Rage128 are many
generations old and you should probably avoid these if possible, especially the Rage
(Mach64) chipset which is even older and less supported. On desktops, Radeon cards are very
cheap to buy, and Radeon chips are common in many laptops now too.

Getting a Radeon 7500 and up in a laptop is reasonably common these days, with many
smaller units coming with them now. In the past I have found that sometimes the type of
chipset contained in a laptop is not reported accurately by the manufacturer, so you should
check http://www.tuxmobil.org and read the feedback people post before purchasing. Be
aware that not all Radeons are supported any more, so it is very important that you chose
wisely!

The DRI project directly produces their own drivers for the ATI Radeon cards, supporting
Radeon models up to the 9200. The 9200 is the last of the R200 series, and all models
upwards are R300 models and are not supported. ATI is not releasing the specifications for
the R300 models, and the open source driver will not do 3D acceleration on these systems.
XFree86 only mentions this briefly in its output logs however, and so you can think your
system is using acceleration when in fact it is not. ATI have released a binary driver to
support all of their Radeon models, and this is required if you want to get 3D acceleration on
an R300 card in particular. The ATI binary driver is nowhere close to the Nvidia driver in
terms of quality and ease of installation, and I am undecided as to whether the DRI or ATI
driver is better. They are both average drivers with their plusses and minuses.

We have used the DRI Radeon driver on an IBM Thinkpad T40p and a Dell Inspiron 600m,
which contain an ATI Radeon FireGL 9000 and Radeon 9000 respectively. Many
distributions like Knoppix will get the 3D acceleration configured automatically, which is
very nice. Both the DRI and the ATI driver generally work, but under a heavy rendering and
processing load, we have observed the rendering slowing down and then panicking and
crashing the kernel. We are not sure what causes these problems, but they are worrying
because they can happen at any time and this is not acceptable for the systems I build. On the
contrary, I have never experienced similar reliability issues with the Nvidia driver. There are
a number of other problems with the Radeon drivers as well, mainly the DRI version I am
most familiar with. Some software including my own renders flashing textures and there
seems to be no fix for this problem. It seems almost impossible for the driver to control how
the LCD and external displays are used. If the BIOS decides to send all output to the monitor
on boot up then the LCD screen can not be forced on with an XFree86 configuration file
option. If you can trick the BIOS into booting the system with both displays on, the DRI
driver won't support 3D acceleration in dual-head mode, further limiting its usefulness. I have
also had problems with the frame buffer kernel support, if the modules are loaded at startup
then the DRI driver cannot enable 3D acceleration. It seems that under Linux there is no way
to prevent a module from being loaded without deleting the module or recompiling the kernel.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 16

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

As you can see, I have had a frustrating experience with Radeon chips. In general, I am a bit
disappointed in the driver quality, especially when years ago people were telling me about
how stable they were! The Nvidia driver is superior in every way in that it doesn't have any
bugs I can see and supports full external display control from the XFree86 configuration file. I
will never buy a Radeon based laptop ever again as long as I can find a suitable model with an
Nvidia chipset inside it.

3.2.3 Other cards

If you are not using one of the big two graphics chipsets (Nvidia or ATI) then support varies
depending on the chipset that you have. While the chipsets by Intel that are integrated into
motherboards are okay for simple 3D applications, they are not powerful enough to handle the
live texture map example described previously. The integrated Intel graphics aren't too bad
though, and they would be my third place recommendation if you can't get one of the big two
in your laptop.

If you are out to buy a video card for your computer, I would recommend you stick with
Nvidia or ATI – a lot of people use them, lots of testing has been done, and you can get help
on various forums. I would steer clear of other brands because they are typically much
cheaper and more cut down. This is fine for Windows where the drivers are supplied, but for
Linux this gets risky and its not really worth the trouble.

Many years ago there used to be a project called Utah-GLX which was designed to provide
3D on very old cards such as ATI Rage and 3dfx Voodoo. This support works quite well on
these chipsets, but the hardware is so old that it really isn’t suitable for the work we will
perform in this tutorial. If you have a desktop then I suggest you get another card like the ones
recommended above, although if you have a laptop you don’t really have a choice and so you
can use this to get it working. I personally have used Utah-GLX with XFree86 v3.3 on an ATI
Rage Mobility laptop and got it to work quite well with standard OpenGL applications,
although the live video texture map slowed performance down to about 2 frames per second.

In summary, get yourself an Nvidia or an ATI card. The low end models are basically free
from people throwing them out, and so there is no reason not to have one in your desktop. On
a laptop you are stuck with what you have, but if you are purchasing a new machine then try
to get a good 3D chipset.

3.3 Configuring X using xchanger

I am amazed at the number of Linux systems out there which have 3D hardware installed but
do not have it configured correctly. Many distributions don't write out configuration files that
support 3D, and XFree86 gives hopeless debugging information that doesn't tell you why it is
disabled. Forums are full of helpful people who know nothing, giving out incorrect advice
that just makes things worse. No one seems to know anything about it, and so I want to talk
about it in this tutorial to help everyone out.

The thing I find most frustrating is that by now you would have thought that generating a
configuration file for XFree86 would be a solved problem. There are thousands of example
config files floating around on the Internet when there really doesn't have to be. Furthermore,
it seems like it is still impossible to change the display resolution or configuration on the fly

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 17

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

without editing configuration files by hand. The last thing you want to do when trying to
connect your laptop to a projector and playing with many resolutions is to have to edit
configuration files! While there are extensions such as XRANDR, not all servers support
them, and usually not with 3D acceleration at the same time either.

As a temporary measure until these problems are addressed properly, I have written a GPL'ed
program called xchanger. It takes in template configuration files and uses the C preprocessor
to substitute in resolution and display configuration information, generating an output file
suitable for XFree86. There is a small program written in shell and using dialog which allows
the user to pick the resolution of their displays, and pick the layout of the displays. I have
supplied template files for Radeon and Nvidia systems that I have tested on every machine
that I have. If you follow my advice and buy only Radeon or Nvidia systems then you will be
able to use my standard configuration files and have working 3D support with no problems. I
would like to encourage everyone to standardise on a configuration file that works for as
much hardware as possible, so that the majority of hardware will work to its full potential
with no messing around by the user.

I have provided a copy of xchanger as part of the example files included with this tutorial.
There is also a package named tinmith-xchanger you can install which will automatically
configure itself on your system. The xchanger tool is released under the GPL, and I would
like to hear about what others think about it. I would also be interested in letting someone else
maintain xchanger for Debian since I'm not really an expert at building proper packages, so
please contact me if you are interested.

3.4 Programming OpenGL

This tutorial will not cover too much about how to program OpenGL programs themselves.
We will focus on the Linux specific issues and leave you to find out more about OpenGL
from other places. The best place to learn OpenGL is from what we graphics people call “The
Red Book”. Pretty much everyone I know who does GL coding learned how by reading this
book, and it is very well written with many excellent examples.

OpenGL(R) Programming Guide: The Official Guide to Learning OpenGL
Version 1.2 (3rd Edition)
By Mason Woo, Jackie Neider, Tom Davis, Dave Shreiner, OpenGL Architecture Review Board
http://www.opengl.org/documentation/red_book_1.0

If you Google for ‘opengl red book’ then you will find many references to it, and I have
linked to a version that you can download yourself. There is another reference manual called
“The Blue Book”, but this one is just a dump of all the man pages and is not very useful. If
you use Google or visit http://www.opengl.org/developers/documentation there is a lot of free
stuff on the web you can use to look up what the functions do. The red book also comes with
a wide range of examples that are available online at the location
http://www.opengl.org/developers/code/examples/redbook/redbook.html.
There are many free tutorials available on the web. While many of these are written by
Windows people, they are mainly written to use the GLUT toolkit which means the source
code is portable across most platforms, and so are still useful. Of all the web sites I’ve seen,
probably the most useful is Nate Robbin’s http://www.xmission.com/~nate/tutors.html site.
Nate has built example tools which allow you to interactively tweak OpenGL function
parameters to see what will happen without having to write your own demo application.
These tools are very useful to work out what values to use very quickly and easily.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 18

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

3.4.1 Libraries

When you write applications for OpenGL, there are a number of libraries which you may or
may not use depending on what kind of functionality you need.

libGL is the core OpenGL functionality, with all functions named something like gl[NAME].
On the original SGI implementation, every one of these functions was fully implemented in
hardware for optimised performance. This library provides primitive rendering, texture
mapping, and matrix transformations. When you want to perform hardware accelerated
rendering under X11, your driver (DRI, Nvidia, etc) will provide a complete libGL shared
library object for you to use. If you do not have one then a software emulation like Mesa will
be used.

libGLU is the OpenGL utility library and sits on top of the core GL functions, with all
functions named glu[NAME]. There are some functions for assisting with camera placement,
and to handle advanced functionality such as tessellating triangles. A triangle tesselator is a
program that takes an arbitrarily sized polygon and breaks it up into triangles for you. I have
found that the standard GLU tessellator functions provided by Mesa are very buggy and fail
to successfully tessellate any kind of complex triangle. To get around this, I compiled up a
copy of the SGI tesselator which has been released as open source, and this works much more
reliably.

libGLUT is the OpenGL utility toolkit and sits on top of the code GL functions. While the GL
functions allow code to render to the hardware, no provision is provided to configure a
window on the display or interact with the rest of the window system. The GLUT library is
very nice because it provides a set of commonly used functions for opening the display and
handling user input. The GLUT library is available on most architectures (Linux, Windows,
MacOS, etc) and so if you write your code to be portable and only use GL, GLU, and GLUT
calls then it will work on any of these platforms. In general, if you are able to write your
application using only GLUT calls, do it because it will save you a lot of grief. You can do
everything yourself but it can be quite painful and there isn’t too much documentation for it.

GLX is the interface that we use if we want to write OpenGL applications specifically for X
servers. While the GLUT toolkit is nice, it cannot open multiple windows and does not
provide the ability to access X server specific structures (because it is designed to be generic
across platforms). So if you are going to write an application optimised for best performance
with your own custom software architecture, GLX is definitely the way to go. Note that there
are other ways of embedding OpenGL into your applications. GUI toolkits such as Qt,
GNOME, and Motif all provide widgets that you can write OpenGL to. Note that these
widgets were written using the GLX interface to fit with the rest of the toolkit. The strange
part with GLX is that it is very hard to find much information about this, all the docs you read
either tell you to use GLUT or use an existing widget. I have included an example below
which opens up an X window but also configures it for OpenGL drawing as well.

/* Global context information */
Display *__display; /* Pointer to the X display connection */
Window __window; /* Handle to the X window to draw in */
int pixels_x = 640; /* Width of the display in pixels */
int pixels_y = 480; /* Height of the display in pixels */

/* Temporary variables needed within this function, but not kept */
XVisualInfo *vi;
GLXContext context;
Colormap cmap;

/* Open a connection to the X server */
__display = XOpenDisplay (NULL);

/* Handle the case of not being able to make the connection */

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 19

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

if (__display == NULL)
 gen_fatal ("Could not open connection to X server on path [%s] - check the DISPLAY variable",
XDisplayName(NULL));

/* Get a visual from the display which meets our requirements */
static int attribute_list [] = {
 GLX_RGBA, /* We want a true colour visual */
 GLX_DOUBLEBUFFER, /* Double buffering is required */
 GLX_DEPTH_SIZE, 1, /* Minimum one bit for depth buffer needed */
 GLX_RED_SIZE, 1, /* Minimum one bit per plane for RGB values */
 GLX_GREEN_SIZE, 1,
 GLX_BLUE_SIZE, 1,
 None }; /* This must be at the end of the list */

vi = glXChooseVisual (__display, DefaultScreen(__display), attribute_list);
if (vi == NULL)
 gen_fatal ("Could not get RGBA double buffered visual from the X server");

/* Now create a GLX context on the server - do not share lists (NULL), and use direct
 drawing with the server when possible (GL_TRUE) */
context = glXCreateContext (__display, vi, NULL, GL_TRUE);

/* Create a color map, we need to do this to create a new window */
cmap = XCreateColormap (__display, RootWindow(__display, vi->screen),
 vi->visual, AllocNone);

/* Create a window which is the size we would like */
XSetWindowAttributes attr;
attr.colormap = cmap;
attr.border_pixel = 0;
__window = XCreateWindow(__display,
 RootWindow(__display, vi->screen),
 0, 0,
 pixels_x, pixels_y,
 0, vi->depth, InputOutput, vi->visual,
 CWBorderPixel | CWColormap,
 &attr);

/* Setup the window title */
{
 XTextProperty x_window_name;
 char *title = "WINDOW TITLE GOES HERE";

 XStringListToTextProperty (&title, 1, &x_window_name);
 XSetWMName (__display, __window, &x_window_name);
 XSetWMIconName (__display, __window, &x_window_name);
}

/* Configure the window to produce exposure events */
XSelectInput (__display, __window, ExposureMask);

/* Map the window to the display, waiting for it to appear before continuing, if we do
 not do this then our application may fail on slow or laggy X servers! */
XMapWindow (__display, __window);
while (1)
 {
 XEvent x_event;

 /* Wait for event to occur */
 XNextEvent (__display, &x_event);

 /* Check to see if event was Expose */
 if ((x_event.type == Expose) && (x_event.xexpose.window == __window))
 break;
 }
/* Reconfigure window to produce no events */
XSelectInput (__display, __window, 0);

/* Get the context, and make it the active one for OpenGL commands. This function
 allows us to control which window all the GL commands will go to. This allows
 us to have multiple windows if we wanted. */
glXMakeCurrent (__display, __window, context);

/* Add event listening to the connection so we know when things happen in the server */
XSelectInput (__display, __window, X_INPUT_MASK);

/* Flush everything out to the server now */
XFlush (__display);
XSync (__display, False);

/* Set up the graphics viewport - use the entire window allocated */
glViewport (0, 0, pixels_x, pixels_y);

/* Set the display to be 0,0 in the top left, and X,Y at the bottom right */
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluOrtho2D (0, pixels_x, pixels_y, 0);

/* No modelling transformations required for now */
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

/* Continue with the rest of our OpenGL code now */

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 20

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

After this code you can then execute standard OpenGL commands. The next thing to do is flip
the display when we have completed drawing because we are using double buffered mode. To
do this, we have to make sure to tell GLX to flip over the buffers:

/* Swap the buffers – this does a flush automatically */
glXSwapBuffers (__display, __window);

/* Clear the new buffer for drawing */
glClearColor (0, 0, 0, 1.0);
glClear (GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

/* Flush the GL pipeline to make sure any errors get picked up */
glFlush ();

/* Check for any errors that occurred */
GLenum glerror = glGetError ();
if (glerror != GL_NO_ERROR)
 gen_fatal (“OpenGL error code %d detected, graphics system has failed - %s”, glerror, gluErrorString
(glerror));

3.5 Live video display

OpenGL is a very powerful graphics library that is capable of performing pretty much
everything you could ever imagine. Since you can perform anything Xlib can do, but with
arbitrary transformations and viewpoints, you can write your applications in pure OpenGL
like I have been doing lately. You can mix Xlib and OpenGL commands but you must ensure
you flush the pipeline so they can be kept synchronised properly. Back to using OpenGL
though, the Red Book goes into a lot of examples showing the kinds of things you can do with
OpenGL, and so here we will cover an example of something a bit different and less
mainstream.

As described previously, there are a number of X extensions for displaying live video, but
there is no real portable interface supported by all video cards. OpenGL supports two
different ways to send large amounts of pixel data to the card very quickly. The first method
is to use the glDrawPixels() function call. This method takes in an image and maps it directly
to the pixels on the display, and in theory should work quite well. In practice, this function
causes the rendering pipeline to stall because it must flush all existing operations currently in
progress. This function is not normally used and so hardware manufacturers typically do not
optimise it either. One thing that is highly optimised is texture mapping however, and so this
is the recommended way to draw images quickly in OpenGL. So we load the texture into the
video card, and then draw polygons with the image as its texture. By drawing a square onto
the display we can achieve an object that looks just like the texture was copied to the display,
but the operation takes advantage of the optimised texture rendering hardware. Using texture
maps has the following advantages over glDrawPixels and standard X windows methods:

• The application can send data directly to the hardware with no overheads

• It is much faster than glDrawPixels() because the pipeline is heavily optimised for it

• Images can be cached within the video card so when they are reused they do not need
to be copied across the AGP bus again

• Any linear transformation such as scale, rotate, and shear can be performed in the
hardware for free with no performance penalty

• Video data can be supplied in RGB, YUV, greyscale, or any other format and OpenGL
will manage any conversions automatically

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 21

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

• Video can be mapped onto any 3D polygon, so you can have a virtual TV set with live
video within a 3D world as you move around

So as we can see, using OpenGL for video display is both easy to use and very powerful.
Applications such as MPlayer and ARToolKit have display code that is capable of using this
rendering technique. One catch with using textures in OpenGL is that there is a restriction that
the texture must be a power of two in each dimension. So if you have a 320x240 image from
your camera, you must supply to OpenGL a texture image which is rounded to 512x256. By
forcing this requirement OpenGL is able to accelerate texture performance further. While this
limitation may seem difficult to deal with, the important thing to realise is that a scaled image
like this is only required for the first frame! We don’t really want to implement our own
function to pad an image as each frame comes in from the camera, because we aren’t gurus at
writing optimised image handling code. Instead, OpenGL supplies a function
glTexSubImage2D() which allows us to replace the existing image with a sub-image that does
not have to be a power of two. This function then magically copies the image data over and
fills it into the texture correctly, and we will assume that the people who wrote this function
did a good job of it. It would be nice if all the texture functions didn’t have this restriction but
we will have to live with these decisions, I am sure they were made for good reasons. With
the above exceptions explained, we are now ready to explain the process of mapping live
video to a textured polygon. We will explain video capture in a separate section later on, that
is another problem of its own.

Let us assume for this example we have a 320x240 input stream which is 24-bit RGB
formatted. The first step is to perform a one time initialisation to get started, and then we will
explain the rendering part which is repeated every time the frame is redrawn. I have written a
demo program that draws some polygons with live texture mapped video, and it is included in
the demo section of my area on the conference CD.

3.5.1 Initialisation

We will assume that everything else in OpenGL has already been configured before this
point. The only major trick is to remember to turn on an appropriate texture mode somewhere
during startup, so we do this:

/* Replace mode ensures the colours do not affect the texture */
glTexEnvi (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE);

The first thing we must do is turn on texturing and then make sure we turn it off once we are
done here because otherwise it will affect any other primitives drawn afterwards:

/* Tell the video card to turn on the texturing engine */
glEnable (GL_TEXTURE_2D);

We now need to create the padded buffer which is rounded to the nearest power of two
(512x256). The contents of the buffer are unimportant but I have initialised it to all 0xFF
which will make it white if rendered. This buffer is supplied to OpenGL so it can initialise
itself, and we can destroy it after because OpenGL makes a copy of the buffer rather than only
a reference:

GLuint texid;
int width = 320;
int height = 240;
int round_width = 512; /* Power of two of width */
int round_height = 256; /* Power of two of height */
int bpp = 3;
int round_bytes = round_width * round_height * bpp;
char round_buffer [round_bytes];
memset (round_buffer, 0xFF, bytes);

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 22

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Now we need to initialise a texture map in the video card’s memory. Note that the card
allocates a handle called texid that we will need to keep for later use when we want to draw
with the particular texture. Whatever you do, make sure you do not run this code more than
once per texture (ie, don’t put it in the render loop) because you will run out of memory.
Think of the glGenTextures() as a kind of malloc() call that needs to be freed up later:

/* Tell OpenGL the length of each row of pixmap data in pixels */
glPixelStorei (GL_UNPACK_ROW_LENGTH, round_width);

/* Allocate a new texture id */
glGenTextures (1, &texid);

/* Set the new texture id as the current active texture */
glBindTexture (GL_TEXTURE_2D, texid);

/* Set some parameters for the texture. We want it to be tiled and also to not perform any special
filtering to improve performance */
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

Now we will load in the blank image we previously created. An interesting thing to note here
is the use of GL_RGBA8 even though we specify GL_RGB as the format. What does this
mean you may ask? The second GL_RGB is the format of the input image from the camera
and tells OpenGL how to interpret the data we have supplied. The first GL_RGBA8 is the
internal format to use on the video card however. GL_RGBA8 represents the image with
transparency support and 32-bit padding internally in the video card memory, and gives the
best performance and texture quality on hardware I have tested it on. You can use others but
watch out for performance or quality problems:

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA8, round_width, round_height, 0, GL_RGB, GL_UNSIGNED_BYTE,
round_buffer);

Now we finish off and disable texturing and we can do any other initialisation work:
glDisable (GL_TEXTURE_2D);

3.5.2 New video frame

When a new video frame arrives, we need to capture the video frame, enable texturing, and
then pass the image on to the video card:

/* Capture a frame of data */
int width = 320;
int height = 240;
char *in_data = video_capture_function ();

/* Enable texture mapping */
glEnable (GL_TEXTURE_2D);

/* Activate the previously created texid */
glBindTexture (GL_TEXTURE_2D, texid);

/* Load in the new image as a sub-image, so we don’t need to pad the image out to a power of two.
 Note that some libraries return video in BGR format, so you may need to replace GL_RGB with
 GL_BGR if you get weird looking colours. */
glPixelStorei (GL_UNPACK_ROW_LENGTH, width);
glTexSubImage2D (GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGB, GL_UNSIGNED_BYTE, in_data);

/* Disable texturing */
glDisable (GL_TEXTURE_2D);

For those of you who may be considering the use of threads to keep the video capture and
render loops separate, be warned that this is dangerous. Most Linux libraries (including
OpenGL and Xlib) are not thread safe by default and you will cause big problems if you try to
make calls from two threads simultaneously. The best way to implement threading is to have
the frame capturing code copy the new images into a memory buffer, and then have the
rendering loop be the only code which makes OpenGL calls. You can try to implement
locking but these introduce performance overheads because either the kernel has to get
involved, or you have to waste CPU cycles waiting for spin locks to clear.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 23

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

3.5.3 Render

The render code may be run even when there is no new camera data available. The user might
want to change their viewpoint and so we may need to refresh the display even if the video
has not changed. To do this, we do a standard OpenGL texture render operation:

/* Turn on texture mapping */
glEnable (GL_TEXTURE_2D);

/* Activate the previously created texid */
glBindTexture (GL_TEXTURE_2D, texid);

/* Any polgons we draw from now on up to glDisable() will have the texture mapped to their surface */

/* Draw a square of size 1.0x1.0 with the video exactly mapped to fit it, taking into account
 the padding that was required to make the image a binary power of two in size. */
double scale_width = width / round_width;
double scale_height = height / round_height;
glBegin (GL_QUADS);
glTexCoord2f (0.0, 0.0); glVertex2f (0.0, 0.0);
glTexCoord2f (0.0, scale_height); glVertex2f (0.0, 1.0);
glTexCoord2f (scale_width, scale_height); glVertex2f (1.0, 1.0);
glTexCoord2f (scale_width, 0.0); glVertex2f (1.0, 0.0);
glEnd ();

/* We can draw any other polygons here if we wanted to as well, this is good because we can keep
 the same texture loaded into memory without requiring a new one to be swapped in. */

/* Turn off texture mapping so that other polygons are rendered normally */
glDisable (GL_TEXTURE_2D);

3.6 Scene graphs

OpenGL is designed to render primitive shapes such as lines and polygons with texturing and
lighting effects. OpenGL is a very low level graphics toolkit and while it is possible to write
complete applications using it, the programmer has to supply much of their own code to
handle common tasks. You can think of OpenGL as being equivalent to Xlib in terms of
functionality, and most people do not write their applications directly using it. Instead they
use a higher level toolkit such as Qt (KDE) or GTK (GNOME) which provides more useful
functionality such as widgets.

The most powerful high level programming library for OpenGL would have to be Open
Inventor, again developed by SGI. This library was originally designed back in 1992 to
provide a more functional environment for programming complex 3D applications. It
provided features such as a powerful object model in C++, a scene graph, user interface
widgets, object selection, engines for animated objects, and a file format which forms the
basis for VRML. Even though it is quite old, the design of the toolkit is still excellent and
there is nothing that even compares in terms of functionality and design – the people at SGI
who designed Inventor and GL really knew what they were doing.

To provide a more detailed description, a scene graph is a description of an environment that
also contains relationships between various objects. To represent a human in a scene graph,
the body of the human would be the root node, with the head, arms, and legs attached to it.
The nose and ears are attached to the head, and the hands and feet are attached to the arms and
legs respectively. A scene graph is able to calculate transformations so that if you move the
body, the rest of the parts will move with it. If you rotate the head for example, the nose and
ears will move to match this motion. Scene graphs are very useful when representing complex
mechanical systems and make rendering them very simple. Another bonus from using a scene
graph is that the renderer is able to cache the results of previous runs to improve performance
on the renders later on. OpenGL supports a number of features such as display lists and vertex
arrays which can be used to improve performance.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 24

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

3.6.1 Coin3D

SGI have recently released the source code for Inventor to the public, and groups have taken
this code and cleaned it up. A commercial group have developed their own version of
Inventor named Coin3D from scratch and released it as GPL code to the public. The free
version may be used in GPL applications at no cost but commercial applications without
source code require a license fee to be paid. A number of my colleagues who use Inventor all
swear that the Coin version of Inventor is much better than the SGI sources (less bugs, less
problems, etc) and so you probably should have a look at Coin first. There is a book called
“The Inventor Mentor” by Josie Wernecke which describes all of the functionality of
Inventor, but unfortunately other documentation seem to be a bit hard to come by. Coin have
a complete generated set of documentation available on their web site, but it is more to be
used as a reference and there are no examples. You can however download the collection of
the examples from the Inventor Mentor book, and these are probably the most useful.

The Coin libraries have a number of nice features apart from the standard Inventor object
collection. It has the ability to read in VRML files and natively support them in the scene
graph, so you can use it as a generic VRML parser. Secondly, it is possible to use only the
rendering code (and not the user interface widgets) and use Coin as your renderer in your
application. This requires a bit of messing around but is possible and means you can use Coin
instead of other libraries such as OpenVRML. When I was building VRML support into my
application, I found that OpenVRML was not documented enough to be able to work out how
to embed it into my existing scene graph, whereas Coin worked very easily.

To use Coin to read in a VRML file, use the following code:
SbViewportRegion *inventor_viewport;
SoGLRenderAction *inventor_render;
SoSeparator *inventor_root;

/* This is my special hacked callback function which forces the solid flag to be false to ensure that
 most of our VRML objects are rendered properly */
SoCallbackAction::Response adjust_vifs (void *, SoCallbackAction *, const SoNode *node)
{
 /* We can safely cast the object because Inventor wouldn't have put us here otherwise */
 SoVRMLIndexedFaceSet *vifs = (SoVRMLIndexedFaceSet *)node;

 /* Set the attributes we need - just turn off solid and that ensures we have no backface culling */
 vifs->solid = false;

 /* Done, tell Inventor its ok to continue */
 return (SoCallbackAction::CONTINUE);
}

void init_coin (char *infile)
{
 /* Initialise Coin */
 SoDB::init ();

 /* Create an Inventor container for everything */
 inventor_root = cnew SoSeparator;
 inventor_root->ref ();

 /* Control extra attributes of the object - make sure solids render right */
 SoDrawStyle *draw = cnew SoDrawStyle;
 draw->style = SoDrawStyle::FILLED;
 inventor_root->addChild (draw);

 /* The Coin documentation says we must use this combination to get two sided lighting and no backf
ace culling */
 SoShapeHints *shape = cnew SoShapeHints;
 shape->shapeType.setValue (SoShapeHints::UNKNOWN_SHAPE_TYPE); // The Coin docs say this is important
 shape->vertexOrdering.setValue (SoShapeHints::CLOCKWISE); // Clockwise ensures that cones and
spheres render right
 inventor_root->addChild (shape);

 /* Now add a child to the root which will hold the VRML object */
 SoSeparator *container = cnew SoSeparator;
 inventor_root->addChild (container);

 /* Read in the specified input file */
 SoInput input;
 if (!input.openFile (infile))

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 25

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

 gen_fatal ("Could not open Inventor input file %s", infile);

 /* Parse the specified input file */
 SoSeparator *read_obj = SoDB::readAll (&input);
 if (read_obj == NULL)
 gen_fatal ("Could not parse Inventor input file %s", infile);
 input.closeFile ();

 /* Add the new object to our container */
 container->addChild (read_obj);

 /* Now we need to walk the tree and look for any VRML geometry nodes and force the backface culling off
 because the Inventor SoShapeHints does not control VRML nodes! */
 SoCallbackAction action;
 action.addPreCallback (SoVRMLIndexedFaceSet::getClassTypeId(), adjust_vifs, NULL);
 action.apply (inventor_root);

 /* Set up a viewport based on the display, I have no idea why we have to do this, but if
 you get the value wrong then the image does not render properly. However, if you do this
 then all is good and you have no problems, so I'm just going with it because it works */
 inventor_viewport = cnew SbViewportRegion (DISPLAY_WIDTH, DISPLAY_HEIGHT);

 /* Setup a rendering object for OpenGL */
 inventor_render = cnew SoGLRenderAction (*inventor_viewport);
}

To get Coin to render the VRML object, set up your transformations correctly and then call
the following code:

void render_vrml (void)
{
 /* Save rendering state because it could be changed inside OpenInventor */
 glPushAttrib (GL_ALL_ATTRIB_BITS);
 glMatrixMode (GL_MODELVIEW);
 glPushMatrix ();

 /* Render the Inventor scene here */
 inventor_render->apply (inventor_root);

 /* Restore attributes off the stack */
 glMatrixMode (GL_MODELVIEW);
 glPopMatrix ();
 glPopAttrib ();
}

Make sure then any VRML files you supply have all the lights and viewpoints removed from
them, otherwise Coin will try and reset these and will cause undesired effects that you have
not planned for.

3.6.2 Other scene graphs

There are a number of projects that aim to provide a scene graph for use on top of OpenGL
(or other 3D graphics libraries). Apart from Coin, there are a number of other libraries that
provide this functionality. It should be noted that Coin provides more than just a scene graph,
and can be used to write complete applications on its own. OpenVRML
(http://www.openvrml.org) is designed to be a parser for VRML files so you can integrate it
into your existing applications. I did not end up using this library because it was not as well
supported as Coin and I could not embed an OpenVRML node within my existing scene
graph – the examples I found were for an older version of the API. Others such as OpenSG
(http://www.opensg.org) and OpenSceneGraph (http://www.openscenegraph.org) are also
available, although I have no experience with either of these libraries.

If you are writing a complex 3D application, you should really seriously consider using a
scene graph to help make your job easier. You could write your own like I did back in 1999
when there was nothing else you could use on a laptop, but this is painful and very tedious,
and the result is usually not as good as what others have achieved. Try to stand on the
shoulder's of giants who are probably a lot smarter than we are at writing these kinds of
applications!

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 26

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

4 Video capture

There are two low-level ways of capturing live video under Linux as of the time of this
writing: Video4Linux (V4L) and 1394 Firewire (video1394). Video would have to be the
weakest point in Linux right now, with little documentation and very low level hardware
interfaces that make programming difficult. Dealing with low level APIs is generally not
desirable, as the programmer has to do much of the programming themselves. This becomes
especially tedious when trying to make your applications as generic as possible. There are
projects for Linux such as GStreamer which are attempting to develop a generic video
framework similar to DirectShow for Windows. GStreamer is still under development
however, and writing applications to use it is not for beginners yet. In this tutorial I will
attempt to demystify the low-level APIs that support video under Linux, and give some
examples of how to use them. I have provided in the example code a demo program that takes
these code snippets and integrates them into a single example so you can see it all being used
and modify it for your own use.

4.1 Video4Linux

Video4Linux (V4L) was the first API developed to provide a common interface for video
capture devices. Most devices that support video under Linux such as PCI capture cards and
USB cameras support this interface. Applications such as xawtv support V4L input, and
mplayer supports the ability to write output to a V4L loopback device so other applications
can read from it. The API is very simple and all processing is performed in the kernel, with no
user-land library to support it. The API provides for open() and close() calls, and ioctl() is
used to control settings and request image frames. If the camera does not provide the image in
the right format (YUV instead of RGB for example) then you will need to implement a
conversion routine yourself. So writing code using this API is very low level and “to the
metal” programming, and you have to do a lot of playing around yourself if you need
anything different done. V4L was originally developed based on the interface from the BTTV
driver, and my understanding is that it was never really intended to be an extensible API for
the future.

Be wary of using V4L however, it seems like many of the devices supported by it are getting
old and fading out of use. Many of the USB cameras that I have are no longer supported
under 2.6 because they supposedly don't follow the USB specification. The main problem
with USB cameras is that there are no standards for them, and every manufacturer makes
them with different chipsets. Cameras require their own Linux drivers, and only a few are
supported. I don't think any USB 2.0 cameras are supported, and so you are stuck using only
the older low quality USB 1.0 cameras that are quite old. So with this in mind, all my video
work nowadays is performed using Firewire cameras (discussed in the next section) and I
don't use V4L or USB cameras much any more.

Recently, a new video API called Video4Linux2 (V4L2) has been developed to support more
of a complete framework and to fix limitations of the original V4L. The V4L2 API is
available in some 2.5 kernels and all 2.6 kernels. Applications written for V4L will still work
with newer V4L2 drivers because the older ioctl calls are still supported with a compatibility

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 27

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

layer. It should be noted though that not all of the V4L drivers have been converted over to
the new V4L2 API, and so if you write a V4L2 application it will not work if there is only
V4L driver support. I have used the V4L interface for a number of years and will probably
keep using it unless a new need arises. In this section we will focus only on V4L
programming as it is currently the one which is the most supported.

Here is some example code which opens up a V4L device and prepares it for video capture
operations. Note that lots of the code sets up things like channels, video formats, resolutions,
etc:

#include <linux/videodev.h>

/* V4L data structures */
struct video_capability dev_info;
struct video_channel channel_info;
struct video_picture picture_info;
struct video_mbuf mbuf_info;
struct video_mmap mmap_info;

/* Actual memory map of video data */
char *memory_map;

/* Configuration variables */
int width, height, channel, fd;
double brightness = VALUE;
double contrast = VALUE;
double color = VALUE;

void main (void)
{
 /* We need to pass in the appropriate device name, depending on your distribution and configuration */
 open_v4l (“/dev/video”);
 open_v4l (“/dev/video0”);
}

void open_v4l (char *device)
{
 /* Open up the video device */
 fd = open (device, O_RDWR);
 if (fd < 0)
 {
 fprintf (stderr, "Could not open video device %s for read/write", device);
 exit (1);
 }

 /* Get the capabilities of the video source */
 ioctl (fd, VIDIOCGCAP, &dev_info);
 fprintf (stderr, "Device = %s, Name = %s\n", device, dev_info.name);
 fprintf (stderr, "Channels = %d, Width = %d..%d, Height = %d..%d\n",
 dev_info.channels, dev_info.minwidth, dev_info.maxwidth,
 dev_info.minheight, dev_info.maxheight);

 /* Check the values to make sure they are sane */
 width = dev_info.maxwidth;
 height = dev_info.maxheight;
 fprintf (stderr, "Setting resolution to X=%d, Y=%d\n", width, height);
 if ((width <= 0) || (height <= 0))
 {
 fprintf (stderr, "Device %s width/height values (%d, %d) are not valid, must be positive",
 device, width, height);
 exit (1);
 }

 /* Set the channel to the A/V inputs */
 channel_info.channel = channel;
 if (channel_info.channel >= dev_info.channels)
 {
 fprintf (stderr, "Adjusting channel value from %d to %d to put it within the valid range\n",
 channel_info.channel, dev_info.channels - 1);
 channel_info.channel = dev_info.channels - 1;
 }

 /* Grab the information for the above selected channel */
 ioctl (fd, VIDIOCGCHAN, &channel_info);

 /* Set the mode to PAL and print out debugging */
 channel_info.norm = 0; /* ----- Was 0 for PAL ----- */
 fprintf (stderr, "Channel %d, Name = %s, Tuners = %d, Mode = %d\n",
 channel_info.channel, channel_info.name, channel_info.tuners, channel_info.norm);

 /* Set the channel to the one we want */
 ioctl (fd, VIDIOCSCHAN, &channel_info);

 /* Set the picture parameters */
 picture_info.brightness = int (32767 * 2.0 * brightness);
 picture_info.hue = 32767;
 picture_info.colour = int (32767 * 2.0 * color);

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 28

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

 picture_info.contrast = int (32767 * 2.0 * contrast);
 picture_info.whiteness = 32767;
 picture_info.depth = 24;
 picture_info.palette = VIDEO_PALETTE_RGB24;
 fprintf (stderr, "Bright = %d, Hue = %d, Colour = %d, Contrast = %d, White = %d, Depth = %d\n",
 picture_info.brightness, picture_info.hue, picture_info.colour, picture_info.contrast,
 picture_info.whiteness, picture_info.depth);
 ioctl (fd, VIDIOCSPICT, &picture_info);

 /* Get memory map information */
 ioctl (fd, VIDIOCGMBUF, &mbuf_info);
 fprintf (stderr, "Memory Size = %d, Frames = %d\n", mbuf_info.size, mbuf_info.frames);

 /* We need at least two frames for double buffering */
 if (mbuf_info.frames < 2)
 {
 fprintf (stderr, "%d frames is not enough to support double buffering, at least 2 is required",
mbuf_info.frames);
 exit (1);
 }

 /* Open up the memory map so we can use it */
 memory_map = (char *)mmap (0, mbuf_info.size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
 if (memory_map == MAP_FAILED)
 {
 fprintf (stderr, "Could not mmap() %d bytes from the device %s", mbuf_info.size, device);
 exit (1);
 }

 /* Setup structure so the capture calls can use it */
 mmap_info.frame = 0;
 mmap_info.width = width;
 mmap_info.height = height;
 mmap_info.format = picture_info.palette;
}

An interesting problem with V4L is that it does not seem to always support non-blocking I/O
operations! I tried this with my CPIA based camera and any non-blocking calls will always
block. You can open the device with O_NONBLOCK and try to change it with ioctl() calls
but nothing changes. This is unfortunate because it prevents us from writing single threaded
applications that deal with many I/O sources – instead we have to use threads that introduce
problems that we’d rather avoid if at all possible. I have found that GDB doesn't like to debug
threaded programs that use video, and that you may need to attach GDB to the process after it
has started to do any debugging.

To start the capture process, we need to tell V4L to begin capturing frames and get ready for
I/O operations (so this is still initialisation code):

void start_capture (void)
{
 /* Set to the first frame */
 mmap_info.frame = 0;

 /* Start the capture for the first frame */
 ioctl (fd, VIDIOCMCAPTURE, &mmap_info);

 /* Start the second frame as well */
 mmap_info.frame = 1;

 /* Start the capture for the second frame */
 ioctl (fd, VIDIOCMCAPTURE, &mmap_info);

 /* We will use frame zero as the start now */
 mmap_info.frame = 0;
}

The following code captures a frame into a buffer, and will block in the ioctl() until it is
available:

void capture_next (void)
{
 /* Flip the frame values, the next operation will be on the next frame */
 mmap_info.frame = 1 - mmap_info.frame;

 /* Release the previously used frame returned in getFrame() */
 ioctl (fd, VIDIOCSYNC, &mmap_info.frame);

 /* Start this frame off for capturing the next frame */
 ioctl (fd, VIDIOCMCAPTURE, &mmap_info);
}

To retrieve a frame from the buffers that we maintain, we do the following:
char *get_frame (void)
{
 /* Return back a pointer to the current memory buffer */
 return (memory_map + mbuf_info.offsets [mmap_info.frame]);

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 29

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

}

So if we want to have a processing loop that reads in frames from the camera, we do the
following:

while (1)
{
 /* Grab a pointer to a video frame */
 capture_next ();
 char *imgdata = get_video_frame ();

 /* Render the video data to the display */
 render_data (imgdata);
}

So this is the V4L API in action, it is relatively straightforward to use once you have an
example to look at and modify. Make sure you check all the calls for errors, because if any of
them fail you will need to support some kind of fallback case or your own conversion code. If
you don’t want to go to the trouble of writing your own code for this, an easier way can be to
use the video libraries provided by OpenCV or ARToolKit. These libraries are nice because
they are more abstracted but without sacrificing too much performance or flexibility.

4.2 1394 Firewire

Firewire is supported very well under Linux 2.6 as well as newer Linux 2.4 kernels. Firewire
is defined as an IEEE standard 1394, and is sometimes referred to as i.Link as well. Firewire
is able to handle devices such as hubs, hard drives, scanners, and even video cameras. I really
think that Firewire is the way of the future for video under Linux – it seems like V4L is on the
decline but Firewire cameras are very robust and well supported. Since this tutorial is mostly
about video, we will only talk about the implementation of video capture with Firewire. In the
Firewire standard, there are two categories of standard cameras and all cameras can be
controlled in a consistent fashion without requiring new drivers. Digital Cameras (DC) is
designed to control web cam type devices and typically operate at 640x480 with either YUV
compression or raw RGB data. Digital Video (DV) is designed to interface with hand held
video cameras and passes raw DV video which is recorded to tape. While the kernel supports
generic 1394 protocols, it is the responsibility of user-land libraries to implement these other
protocols using the base functionality. LibDC1394 implements interfaces to DC specification
web cameras, while LibDV1394 implements interfaces to DV specification hand held video
cameras.

At the start of this document I describe how to install the libDC code and some problems
there are with older versions. It is very important that you put the latest version on because it
fixes many bugs that were present in the previous versions, and there were also some API
changes. I have tested libDC with a number of cameras made by Point Great Research and
ADS Technologies and it has always worked without any problems. This tutorial will focus
on DC specification cameras and the use of libDC.

Firewire cameras are much nicer than what you can achieve using USB1.0, because there is a
lot more bandwidth available. The cameras are typically able to output resolutions up to
640x480, with frame rates up to 30 fps in YUV and 15 fps in RGB mode. The nice part about
RGB mode is that the image data can be used directly from the camera without performing
any extra image conversions at all, reducing the burden on the CPU further. I have used
Firewire cameras for the past two years for my research and the software support is much
more reliable than the USB CPIA V4L driver which caused lots of kernel problems.

A problem I've noticed with 2.4 kernels is that if you continuously restart your application
that uses a Firewire camera it will eventually just not find the camera and you need to restart

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 30

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

the system. Note that I have never seen this problem on 2.6 kernels. Rather than restarting
your system to fix this (restarted is never acceptable!), a much easier way is to reload the
modules. I wrote a script called 1394-reset which performs this and it will usually fix up any
problems currently happening, as well as start up the modules if they aren’t already running.
See the example code for a copy of this script, but you basically have to reload the modules in
the correct order and with the right arguments:

rmmod raw1394
rmmod video1394
rmmod ohci1394
rmmod ieee1394
modprobe ohci1394 # attempt_root=1 (might be needed on some older 2.4 kernels)
modprobe video1394
modprobe raw1394

In some older kernels, there was a bug that required the extra parameters attempt_root=1
when loading ohci1394.o on some machines – newer kernels do not support this and seem to
not have the bug any more. You may need to add this if you are having problems, and if you
use my supplied 1394-reset script it contains the necessary logic to deal with this problem.

To test firewire cameras, there is a tool called gscanbus which draws a nice connectivity
graph showing where all the devices are plugged into relative to the main 1394 controller.
Coriander is an excellent tool which you can use to debug DC specification cameras, and it
will allow you to graphically adjust all the camera's controls and view live video streams. I
have seen some broken Coriander packages distributed in Debian, so if you have problems
getting video to display you might want to recompile it.

Programming libDC is a bit of a nightmare however. I have managed to work out how to
program everything else in this tutorial, except for libDC. There is no documentation covering
the library at all, and the header files only have the barest number of comments. How anyone
managed to write an interface that uses it is beyond me, because I’ve never found any info on
it. However, the OpenCV and ARToolKit libraries discussed later on provide an interface to
libDC (as well as libDV) and so I ended up using libraries like these to integrate DC camera
support into my code. The example in this tutorial is based on using the ARToolKit, which is
actually a modular set of libraries with interfaces to V4L, libDC, and libDV, and a configure
script to switch between them. The rest of the ARToolKit vision tracking code then uses these
generic interfaces, and it is possible to easily use them from external programs. The video
interface libraries are not thread safe and are not very clean, but you can write a wrapper
around them to make them fit into the rest of your application.

To open up the video device and prepare for video capturing using the ARToolKit, perform
the following steps:

/* Make sure ARToolkit/include is in your –I path to gcc */
#include <AR/video.h>
#include <AR/config.h>
#include <AR/ar.h>

/* Include internal ARtk structures */
AR2VideoParamT *artk_params;

/* Configuration variables */
int width, height;

void init_artk_capture (char *device)
{
 /* Get ARtoolkit to open up the device */
 artk_params = ar2VideoOpen (device);
 if (artk_params == NULL)
 gen_fatal ("Could not open up a camera device with ar2VideoOpen");

 /* Store in width and height info */
 ar2VideoInqSize (artk_params, &width, &height);

 /* Get ARtoolkit to start the capture */
 ar2VideoCapStart (artk_params);
}

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 31

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

To capture a frame of data and then retrieve it, perform the following steps:
char *get_video_frame (void)
{
 /* Use ARtoolkit to get the next frame started */
 ar2VideoCapNext (artk_params);

 /* Return back a pointer to the current memory buffer */
 return ((char *)ar2VideoGetImage (artk_params));
}

So this is a brief explanation of the libDC library and how it can be used in your applications.
If you want to actually know how to program it, I would suggest that you have a look at
lib/SRC/VideoLinux1394Cam/video.c which has the implementation inside ARToolKit. It is
quite complex but if you want to study it, it is there. Recently I have contributed quite a few
of my changes to this code on SourceForge, fixing up bugs and adding more robust camera
detection over multiple Firewire busses.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 32

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

5 Vision tracking

This chapter will talk about some of the possibilities for performing vision tracking using the
previous capture and display code as well as some special purpose libraries which you may
not know about. Vision tracking allows us to implement all kinds of neat applications without
requiring any expensive hardware add ons.

5.1 ARToolKit

In the augmented reality research area, there is a commonly used vision tracking library
named ARToolKit which has been used to implement a number of prototype applications.
The ARToolKit was first released in 1999 by Hirokazu Kato and Mark Billinghurst at the
University of Washington HIT Lab. The source code is released under the GPL so that others
can easily deploy it within their applications and make their own improvements. The sources
are also portable and work under Linux, SGI, MacOS X, and Win32 environments. You can
download the latest ARToolKit from http://artoolkit.sourceforge.net.

The ARToolKit libraries were developed to support the tracking of simple paper based
fiducial markers. Applications can then overlay 3D objects over the top of these markers and
then viewed on a display device. The toolkit generates a 4x4 matrix which includes both the
rotation of the marker as well as its position relative to the camera that is capturing the scene.
It is possible to find the coordinates of the camera relative to the marker by calculating the
inverse of this matrix. The important thing to realise is that while you may not understand
how a 4x4 matrix works, they are commonly used in many graphics rendering libraries (such
as OpenGL) and so you can just copy the matrix from ARToolKit straight into OpenGL with
no extra work. Note that in C you can represent a 4x4 array in row-column or column-row
format, so a conversion may be required for this depending on the library you use.

5.1.1 Installation and compiling

If you have previously installed all the packages necessary for this tutorial, the installation
should be a breeze. Simply download a copy of the toolkit (make sure you get the Linux
version), then extract it into any directory you like. Next, run ./Configure which will ask
which video capture library you want to use (it supports V4L, DC, and DV interfaces). After
that, just type make and it should build without any problems. Note that the latest ARToolKit
sources are configured to use the latest libDC from Debian, and if you are not using this
libDC you may have problems compiling the code.

The next step is to print out some marker patterns that the tracker knows about. Go to the
patterns directory and print out at least pattHiro.pdf, and the rest of them if you want to play
with all the demonstration applications. Once you have the toolkit compiled, you can run it by
going into the bin directory and running the demo simpleTest. Take the pattHiro.pdf marker
on paper and place it on your desk, and then point your video camera toward the marker. You
should notice that once the marker is in full view the software will overlay a 3D model
directly on top of the object. And that’s it, we are ready to play with vision tracking!

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 33

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

5.1.2 ARToolKit internal operation

The ARToolKit is divided up into a number of separate libraries but provides a complete
solution for video capture, vision detection, overlay, and display. This is nice because we
have the ability to plug in and remove libraries as required, for example if we want to supply
our own capture code or integrate the tracking output into our own scene graph. In demos
which completely use the ARToolKit (such as simpleTest), the video is first captured by
libARvideo. Next, recognition of fiducial markers and calculation of camera-space
transformations is performed in libAR, which is then used to render the final scene using the
camera calibration frustum in libARgsub. You can see all the various libraries that are
available by looking in the lib/SRC directory:

AR Single marker recognition library (most apps will need to use this)
ARMulti Use multiple markers attached to an object to improve recognition
Gl Source code for libARgsub which are support routines for display of output
VideoLinux1394Cam Capture library for 1394 based DC compliant web cameras
VideoLinuxDV Capture library for 1394 based DV compliant video cameras
VideoLinuxV4L Capture library for Video4Linux API under Linux
VideoSGI Capture library for Silicon Graphics (SGI) machines
VideoWin32 Capture library for Win32 API machines (download other archive if you want
this)

5.1.3 Example code

The following is a cleaned up excerpt from the source code in examples/simple/simpleTest.c.
Everything you need to know about ARToolKit is pretty much contained within simpleTest.c,
so if the documentation (which is a bit out of date) does not explain enough then look in here.
Unfortunately the comments are a bit lacking but it is straightforward to follow the code. In
this excerpt, we will skip the initialisation part and look mainly at the loop which processes
each frame and decides what to do with it:

/* main loop */
static void mainLoop(void)
{
 ARUint8 *dataPtr;
 ARMarkerInfo *marker_info;
 int marker_num;
 int j, k;

 /* grab a video frame */
 if((dataPtr = (ARUint8 *)arVideoGetImage()) == NULL) {
 arUtilSleep(2);
 return;
 }
 if(count == 0) arUtilTimerReset();
 count++;

 argDrawMode2D();
 argDispImage(dataPtr, 0,0);

 /* detect the markers in the video frame */
 if(arDetectMarker(dataPtr, thresh, &marker_info, &marker_num) < 0) {
 cleanup();
 exit(0);
 }

 arVideoCapNext();

 /* check for object visibility */
 k = -1;
 for(j = 0; j < marker_num; j++) {
 if(patt_id == marker_info[j].id) {
 if(k == -1) k = j;
 else if(marker_info[k].cf < marker_info[j].cf) k = j;
 }
 }
 if(k == -1) {
 argSwapBuffers();
 return;
 }

 /* get the transformation between the marker and the real camera */
 arGetTransMat(&marker_info[k], patt_center, patt_width, patt_trans);

 draw();

 argSwapBuffers();

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 34

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

}

The arVideoGetImage() call is used to capture an image frame using the ARToolKit capture
library. You don’t need to mess around with the previous capture examples if you do not want
to. In fact, if you want to play with 1394 cameras (either DC or DV) I suggest you use the
ARToolKit capture code because it is very tricky to write your own.

argDrawMode2D() configures the display for drawing and then argDispImage() then sends
the image to the display. The display function uses similar texturing techniques that we
described earlier, so if you are want you can use these functions without writing your own.

The next step is that arDetectMarker() is called which does vision detection on the image to
extract out the marker features. This function is the main functionality of ARToolKit and can
be quite intensive, so make sure you do not call this function unnecessarily. The thresh value
is a cutoff used to determine the difference between black and white pixels on the markers
and you may need to tune this for various lighting.

On completion of the vision tracking code, an array of markers is returned back in
marker_info along with a count of the number of markers detected. The next video frame is
then cued up using arVideoCapNext() and the code then continues to look at what markers
were found. The code works through the list and finds which of the detected markers matched
the expected template. The function arGetTransMat() is called which extracts out a 4x3
transformation matrix (this is similar to a 4x4 but has the bottom row cut off because it is
always 0, 0, 0, 1) and stores the result into patt_trans. The final step is to call the draw()
function which makes a call to argConvGlpara() to load this 4x3 matrix onto the OpenGL
stack, and a cube is then placed on top of the marker. argSwapBuffers() is then used to flip the
display over and make it active.

5.1.4 Quick and dirty 4x4 matrix tutorial

In 3D graphics, 4x4 matrices are used to represent both position and rotation of an object
relative to some kind of origin. The matrix contains 16 values that should be stored with as
much precision as possible (float or double) to ensure that the transformation is represented
accurately. Firstly, a matrix that performs no transformations at all is called the identity
matrix (I) and looks like this:

| 1 0 0 0 |
| 0 1 0 0 |
| 0 0 1 0 |
| 0 0 0 1 |

If you have an object and want to move it in the (X, Y, Z) direction from the origin, then you
use a matrix that looks like this:

| 1 0 0 Tx |
| 0 1 0 Ty |
| 0 0 1 Tz |
| 0 0 0 1 |

If you want to scale an object around the origin along each of its three axes, then you use a
matrix that looks like this:

| Sx 0 0 0 |
| 0 Sy 0 0 |
| 0 0 Sz 0 |
| 0 0 0 1 |

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 35

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Performing a rotation about an axis is a bit more trickier, and you can use the following three
matrices to rotate about X, Y, and Z:

c = cos(theta)
s = sin(theta)

 Rotate Z Axis Rotate X Axis Rotate Y Axis
c –s 0 0		1 0 0 0		c 0 s 0
s c 0 0		0 c -s 0		0 0 0 0
0 0 1 0		0 s c 0		-s 0 c 0
0 0 0 1		0 0 0 1		0 0 0 1

If you look at the above matrices, you will notice the trend that the far right column is
reserved for translations, while the top left 3x3 cells are reserved for rotation and scaling.
While OpenGL understands these 4x4 matrices very easily, it is a bit more difficult for
humans to interpret these values easily. If you want to build a quick and dirty tracking system
that returns only the position of the marker relative to the camera, you can safely extract out
the far right column and store the values separately. To do this, ARToolKit uses array[row]
[col] notation, so to extract out the position of the marker relative to the camera's coordinates,
you can do this:

x = matrix [0][3]
y = matrix [1][3]
z = matrix [2][3]

To find the position of the camera relative to the marker's coordinates, you will need to invert
the matrix (beyond the scope of this tutorial) and then perform the above extraction. If you
want to do things like extract out the rotation angles from a matrix, this is quite complicated
and I recommend that you search for Ken Shoemake’s QuatLib, which appears to be included
with another library you can search for called VRPN.

For more detailed theory on matrix transformations, please check out the book by Foley, Van
Dam, Feiner, and Hughes. Computer Graphics - Principles and Practice. Addison-Wesley.
This book has everything you will ever need to know on computer graphics, and more!

5.1.5 Uses for ARToolKit

There are a lot of interesting uses you can put the ARToolKit to. If you do a Google search
for ARToolKit you will find links to hundreds of pages where people describe the work they
have done with it, so it would be a good idea to go and check these out to get some ideas. The
point of this tutorial is not to tell you what you can do with it, but more to show you how to
use it so you can then go and develop really neat user interfaces and applications that we can
check out at the next Linux conference.

For my Tinmith mobile modelling system, I have used the ARToolKit to track my hands and
uses a set of gloves with metallic contacts and fiducial markers. The user can reach out and
grab and manipulate objects in a 3D environment without requiring a keyboard or a mouse.
For this all I did was use the ARToolKit to capture the location of the hands relative to the
camera, and then feed the 4x4 transformation into my scene graph library. We have also built
a simple tracking system that uses shoulder mounted cameras to look at fiducial markers
placed on the ceiling to work out where in a room you are located. Both of these projects are
described in detail (with papers to read) on my web site at http://www.tinmith.net.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 36

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

5.2 Intel OpenCV

Another library we have been using in our research work recently is OpenCV, which is
supported by Intel. This library is available under the BSD license, so it can be integrated into
any application you are working on. The nice part about OpenCV is it provides a collection of
primitive operations for converting images, applying filters, and extracting out image features.
The operations have been developed by computer vision researchers and implement the
current best practice in the area. Rather than trying to implement these algorithms yourself, it
is much easier to use this existing code, and it will probably be a better implementation. I
believe that it also has the ability to use compiled binary libraries from Intel (Intel
Performance Primitives) which are optimised to use the various features of the latest Pentium
processors. I believe these libraries are binary only because GCC is not be able to optimise its
code in the same way that the dedicated Intel compiler can.

To install OpenCV, you can download it from the address
http://www.intel.com/research/mrl/research/opencv or install the Debian packages libcvaux-
dev, libcvcam-dev, and libopencv-dev.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 37

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

6 Hardware development

The most important thing about hacking to remember is that it doesn’t just involve writing
software. There are many other exciting things you can do with your computer as well, such
as opening it up and making modifications with power tools. I am not just talking about
making modifications to your case, but other cool things like making your own input devices
and enhancing the things you already own.

6.1 Interfaces

There are currently a number of different interface standards for PCs that allow us to plug in
devices to extend the functionality of a computer. This section goes through most of the
common types of technology that are easily available to most of us. The focus here is on
which interface is the most appropriate to use while still keeping things relatively simple. I
will not describe things like building your own ISA or PCI card because this is beyond the
capabilities of the average person.

An excellent reference site for all things related to interfacing with hardware is at
http://www.beyondlogic.org – pretty much everything you could want to know is all located
here.

6.1.1 Headers

For all of these examples, it is assumed that you have included the appropriate headers. You
may need to tweak these slightly because they seem to vary across systems, and if your
compiler can’t find a function then look up the man page and see what header files it says are
required.

/* Includes for open() */
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

/* Includes for close(), read(), and write() */
#include <unistd.h>

/* Includes for errors */
#include <errno.h>
#define error_string() (strerror(errno))
#define gen_fatal(format, args...) fprintf (stderr, __FILE__, __LINE__, __FUNCTION__, format, ## args),
exit(-1)

/* Includes for sockets */
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

/* Includes for select */
#include <sys/time.h>

/* Includes for terminal/device stuff */
#include <termios.h>

/* Includes for directory entry stuff */
#include <dirent.h>

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 38

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

6.1.2 Parallel

Probably the simplest way to connect devices up to your computer is via the parallel port,
commonly used for printing and available on pretty much all computers. The printer port
contains 25 pins (DB-25), of which 8 are used for transmitting data along with another 4 or 5
used for sending flow control signals. Years ago before Ethernet became common you could
buy “LapLink” cables that would transfer files between PCs. The original parallel port was
designed to allow 8-bit output, but no input was supported and so you have to use the spare
control pins to be able to read data back in. Newer enhanced parallel ports available on most
PCs nowadays are bidirectional, allowing you to send and receive 8-bit data and use the
control pins as well. A parallel port can achieve much higher speeds than a serial port but has
no hardware assistance and requires the CPU to constantly control it.

The parallel port is nice because you can connect simple switches and LEDs directly up to the
port without having to design much of a connection circuit for it. I have included in the
examples folder a GPL’d program called ledcpumeter by Mike Romberg. This program
allows you to hook 8 LEDs up to your parallel port and use the CPU load to vary the speed of
the flashing. You can create cool case mod effects like Knight Rider style swooshing lighting
for your computer. The parallel port is based on +5V voltages relative to ground, and many
can be turned on and off under software control. Note that only a very limited amount of
current can be drawn from each pin, otherwise you could fry your parallel port. The
ledcpumeter shows that you can drive an LED off each pin, but any more than this and you
will start to have random glitches and other problems. If you want to control devices with
higher current draw, you should consider using an amplifier circuit to provide the current
required. I will not describe amplifiers here because I have not used them; my applications
have only required small amounts of current.

The main limitation of the parallel port is that it is very CPU intensive to operate. In order to
receive data from the port, you can use either polling or interrupts. The polling method relies
on spinning in a tight loop reading the status of the port and capturing data from it. Polling is
very intensive on a CPU and will convert your shiny new Pentium-IV processor into a 486
because it must spend its entire time checking for data and if other applications are running
we might miss data from the port. The alternative method is to use interrupts, so that when
data arrives the kernel schedules the application to read the incoming byte. The kernel has
large overheads for processing interrupts, and so if you need to read a couple hundred or
thousand bytes per second then the machine will also grind to a crawl. If you really need to
use the parallel port, you should consider using something like Real Time Linux or even DOS
which does not impose as many overheads and is designed for these tasks. The standard Linux
kernel is not really designed for these kinds of operations and there are ways we can avoid
using the parallel port. So use the parallel port for tasks you will only do occasionally.

Writing data to the parallel port is quite easy, but requires us to directly access the I/O address
of the printer port. Make sure you are running the parport.o module and find the address that
the port is located at. Parallel devices are typically named /dev/lp0, /dev/lp1, and so forth, and
you can find out their address ranges by looking in the file /proc/ioports. Typically, ports are
located at addresses 0x3bc, 0x378, and 0x278. Before you can write to the port hardware, you
must get permission from the kernel otherwise it will terminate your application because you
normally can’t do this. Windows 2000 and XP completely prohibit these kinds of operations
(even as the administrator) and you must write a kernel level driver to support this access.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 39

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Under Linux you can write a user land application for simple hacks, and if you get serious
you may want to consider writing a kernel module (especially if security is a concern).

To play with the parallel port, we do the following simple code steps:
/* Get permission to do I/O operations from the kernel */
/* ioperm (base_port, number_of_bytes, on_or_off_flag) */
if (ioperm (0x378, 3, 1) != 0)
 generate_error ();

/* Write some bytes to the port now */
/* outb (value, base_port) */
outb (0xFF, 0x378);

6.1.3 Serial RS-232

The RS-232 serial port is another commonly available port available on most computers these
days. The connector can be either 9 or 25 pins (DB-9 or DB-25) and is capable of sending
data in both directions one bit at a time. On most modern PCs with good serial buffering,
transfer rates of up to 115,200 bps are possible. I prefer using the 9-pin connectors because
they have the same capabilities as the larger 25-pin versions but are a lot more compact and
easier to work with. When implementing a serial cable, you must connect pin 5 (ground) on
both ends and appropriately join up pins 2 and 3 which are the transmit and receive lines. To
build a cable that connects two computers together, you would do 5-5, 2-3, and 3-2. For an
extension cable you should do 5-5, 2-2, and 3-3 instead. To support flow control, the
appropriate pins must also be connected to pass this information on. You can generally avoid
this because most simple devices that we will build do not support it or run so slow that it is
not required. So all of the cables that I use for my work only have 3 wires and you can make
things a bit more light weight this way. For more information on making up more complex
serial cables, do some Google searching for schematics or go to the Beyond Logic site
mentioned earlier.

While serial ports transfer data at a slower rate than parallel ports, they are much easier and
more efficient to program for. PCs use internal chips called UARTs which are responsible for
taking data and converting it into a stream of bits for the serial port lines. The CPU does not
need to concern itself with controlling the signals directly, since the UART handles this in the
background. Very old serial UARTs available in the days of the 486 and earlier had very
small buffers and required constant attention from the CPU to ensure that the UART was
always provided with data. This meant that if you tried to run under a multitasking system
with an old UART you could get errors. Newer machines use a 16550 UART which supports
a much larger buffer so that the CPU can do other things and clear the buffer less often. The
benefit of bigger buffers is that the CPU is interrupted less often, and can grab larger chunks
of data when it does happen. They are also more friendly with non-realtime operating systems
such as Linux, which thrive on using big buffers to give flexibility in scheduling tasks. So
from a CPU and operating system point of view, serial ports are definitely the preferred way
to interface hardware to your machine.

The problem with serial ports is that they require more logic in your hardware device so it can
communicate with the computer. While parallel ports allow you to directly connect
components to the pins, with serial you will have to add something in between to collect the
RS-232 protocol signals and reconstruct the original bytes. The RS-232 standard also uses
-12V to ground which makes it more difficult to generate without some kind of dedicated
hardware to support it. I have found the easiest way to build serial port circuits is to use a
Basic Stamp II microcontroller. You can write very simple basic like programs and it uses a

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 40

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

compiler to write the necessary machine language and upload it onto the chip. The BS2 is not
very fast and are a bit pricey, but everything is integrated onto a single chip so all you need to
do is apply power and you are ready to go. Unfortunately the development tools are Windows
only, but are very simple to use and require no assembly language or hardware experience. I
managed to learn how to use a BS2, write useful apps, and build a working hardware device
in a day – that’s how easy it is. Other more adventurous types may wish to investigate the
usage of other microcontrollers but you will need to use assembly language or low level C
code, and acquire the appropriate hardware to flash your images over to, and build a
development board to supply necessary regulators and glue logic. Programming for BS2s is a
whole area in itself and there are tons of docs and examples available on the Internet via a
Google search.

The Tinmith system provides gloves that are used to control the system. The finger presses
are detected by a BS2 sending +5V pulses up each finger tip to see if they are pressing against
other surfaces. The BS2 listens to see if the +5V signal is visible on the palm or the thumb
pads, and if so it then transmits a single byte via the serial port to the host computer. It
performs this test in a tight loop and can poll each finger on both hands more than 30 times
per second, which is adequate for my application. The beauty of using a microcontroller is
that tight an inefficient loops can be offloaded from the main CPU into a small and
inexpensive device designed specifically for the task. The BS2 runs for days on end from a
single 9V battery to perform a task that would max out a Pentium CPU and a parallel port. By
sending serial characters, the CPU is only bothered when something like a finger press
happens, which happens only very rarely when you are a computer.

Programming a serial port requires a bit more setup than a parallel port, but the kernel
provides nice abstractions so that you can treat the serial port more like a file. The kernel
provides devices /dev/ttyS0, /dev/ttyS1, /dev/ttyS2, etc which map to COM1 to COM3 under
DOS. If you have USB based RS-232 serial ports they may map to the existing device naming
or an alternative /dev/ttyUSB0, /dev/ttyUSB1, etc (more on these devices later). By having a
file device we can use the standard read()/write() style operations that we are used to dealing
with normally. When dealing with serial ports, we need to decide on a baud rate (300 –
115,200 bps) and the number of bits (7 or 8) in each character sent. The next thing we need to
think about is the type of interface we want. By default, the kernel mangles lots of the
characters on the serial port, and waits for lines delimited by carriage returns as an extra
buffering mechanism. The default values for a serial port are confused and varying, so the
safe bet is to reprogram all the values on the port to known sane values so that you do not get
any surprises when you move to another machine. There is an FAQ on programming the
serial port under Linux but it can be a bit hard to understand if you are not familiar with all
the terminology used such as cooked mode, canonical mode, etc. The example code below
will fully configure a serial port for reading and writing, turn on non-blocking mode, and
allow you to chose between character or line based buffering:

/* Set these variables to configure the code */
int baud_rate = 38400; /* Set for 38400 baud */
int bits = 8; /* Set for 8 bits per byte (7 is also possible) */
bool line_mode = false; /* Set for single byte mode, there is also line based reading too */

/* Open the device with non-blocking and no controlling TTY attributes */
fd = open (device, O_NONBLOCK | O_NOCTTY | O_RDWR);
if (fd < 0)
 gen_fatal ("Could not open the serial device %s with attributes set - %s", device, error_string());

/* Work out the constant to use for the baud rate from the input value */
int baud = -1;

switch (baud_rate)
 {
 case 300: baud = B300; break;
 case 1200: baud = B1200; break;

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 41

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

 case 2400: baud = B2400; break;
 case 4800: baud = B4800; break;
 case 9600: baud = B9600; break;
 case 19200: baud = B19200; break;
 case 38400: baud = B38400; break;
 case 57600: baud = B57600; break;
 case 115200: baud = B115200; break;
 default:
 gen_fatal ("The baud rate value %d given is not a supported serial port rate", baud_rate);
 break;
 }

/* Decide on a bit flag */
int bitflag;
if (bits == 7)
 bitflag = CS7;
else if (bits == 8)
 bitflag = CS8;
else
 gen_fatal ("The number of bits %d must be 7 or 8", bits);

/* We read in the existing terminal attributes otherwise we could clobber over
 flags which are required in some OSes (got burned in Cygwin before) */
struct termios new_serial;
if (tcgetattr (fd, &new_serial) < 0)
 gen_fatal ("tcgetattr() call on fd %d failed - %s", fd, error_string());

/* Set the baud rate in a portable fashion */
cfsetispeed (&new_serial, baud);
cfsetospeed (&new_serial, baud);

/* Decide on what kind of input we will support */
if (line_mode == true
 {
 /* This is for a line-based cooked mode */
 new_serial.c_iflag |= ICRNL;
 new_serial.c_lflag |= ICANON;
 }
else
 {
 /* This is for raw byte mode */
 new_serial.c_lflag &= ~(ICANON | ECHO | ECHOE | ISIG);
 }

/* Set either 7N1 or 8N1 mode depending on bitflag set above */
new_serial.c_cflag &= ~PARENB;
new_serial.c_cflag &= ~CSTOPB;
new_serial.c_cflag &= ~CSIZE;
new_serial.c_cflag |= bitflag;

/* Disable hardware flow control */
new_serial.c_cflag &= ~CRTSCTS;

/* Disable software flow control */
new_serial.c_iflag &= ~(IXON | IXOFF | IXANY);

/* Flush away all data not yet read or written */
if (tcflush (fd, TCIOFLUSH) < 0)
 gen_fatal ("tcflush() call on port %s fd %d failed, which should never happen - %s", device, fd,
error_string());

/* Set the serial port to use the specified settings */
if (tcsetattr (fd, TCSANOW, &new_serial) < 0)
 gen_fatal ("tcsetattr() call on port %s fd %d failed, which should never happen - %s", device, fd,
error_string());

/* None of our devices use flow control, but some devices like the Basic Stamp don't like to
 have DTR set because this indicates it needs to be reprogrammed. So we need to turn off DTR */
int status;
if (ioctl (fd, TIOCMGET, &status) < 0)
 gen_fatal ("ioctl(TIOCMGET) call on port %s fd %d failed, which should never happen - %s", device, fd,
error_string());
status &= ~TIOCM_DTR;
if (ioctl (fd, TIOCMSET, &status) < 0)
 gen_fatal ("ioctl(TIOCMSET) call on port %s fd %d failed to clear DTR, which should never happen - %s",
device, fd, error_string());

/* Debug */
fprintf (stderr, "Serial port %s fd %d initialised, baud rate %d, line mode %d, DTR cleared, no flow
control", device, fd, baud_rate, line_mode);

Non-blocking mode allows us to check if there is data on the serial port even when nothing is
available. Normally in Unix, if you read from a device but there is no data available the kernel
will not return control back to you until something arrives. This is nice if you are waiting on
the console with “Press any key to continue” but not useful if you have other useful work to
be done instead. The above code is set for non-blocking but you can stop this by removing the
O_NONBLOCK flag. Also note that I have disabled all flow control so if you need this you
will need to put in the appropriate flags in c_cflag to activate it.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 42

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

When using this code, you will need to use read() and write() calls to interact with the serial
port. Using the standard I/O library (stdio.h) is not advised because it adds extra buffering that
you probably don’t want. If the buffer in the kernel contains no data when you read, or is full
when you try and write, the kernel will return an EAGAIN error in non-blocking mode, and
block otherwise. Here is an example of some code that reads the serial port with non-blocking
support:

char buffer [1024];
int result = read (fd, buffer, 1023); /* Leave space for a terminating \0 at the end */
if (result < 0)
 {
 if (errno == EAGAIN)
 {
 /* No data available, go and do something else */
 }
 else
 {
 gen_fatal (“Could not read from serial port with an error - %s”, error_string());
 }
 }
else
 {
 /* Clean up the buffer by adding a terminator at the end. If we don’t add this we could seg fault
 the program and potentially introduce a security hole! */
 buffer [result] = ‘\0’;

 /* Print out the final result now */
 fprintf (stderr, “Data package of [%s] with %d bytes received\n”, buffer, result);
 }

Sometimes you may want to quickly dump out the serial data arriving on a particular serial
device but you don’t want to have to write a C program to do it. By default if you just run cat
on the device name you probably won’t get anything, unless a previous application has left
the serial port set up for you. Here is a simple shell example you can use for many devices
that don’t require flow control:

Set this to your device
DEVICE=/dev/ttyS0

Set this to the baud rate
BAUD=38400

Configure the port with the settings
stty raw –crtscts $BAUD < $DEVICE

Sit forever waiting for new data to arrive
cat $DEVICE

6.1.4 USB serial

Many modern computers nowadays are coming out with only “legacy free” connectors such
as USB and Firewire. Parallel and serial connectors are a very old and clunky way of
attaching devices to a computer, with inefficient CPU controls and slow transfer rates. They
are also not expandable, and so once you have plugged devices into your ports there is no way
to add new ones without putting in another ISA or PCI card into your machine. If you have a
laptop then you are particularly stuck because you can’t add extra cards at all. This was
particularly a problem with my old mobile backpack systems, which included only a single
serial and parallel port.

I firstly experimented with PCMCIA cards that provide serial ports, which seem to have
excellent driver support under Linux since v2.2 (the cards that I have tried anyway). The
problem with these cards is that they are expensive, very fragile and break easily, and that
there are only two PCMCIA slots available. When you run out of ports you are back to the old
problem of before.

The really elegant solution to the problem is to use USB. I have been waiting for something
like USB to appear for years and now that it has arrived it has solved all of my interfacing
problems with the mobile backpack. The best part about USB is that you can use hubs to

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 43

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

connect up as many devices as you want (127 actually). While a PC should make available
about 500 mA of current at 5V, this runs out quickly when you add devices and so you can
add external power supplies if needed.

The first neat hack you can do with USB is leach power off the bus. I have seen lots of
devices do this such as USB powered fans, coffee mug warmers, and phone chargers. One
project I used this for was to USB power an Ethernet hub so I can take it travelling with me
without bringing along a power supply. The first trick is to make sure that you get one which
runs off 5V directly, otherwise you will need a converter which is a hassle. I then cut off the
USB cable from an old mouse and found the two wires that supply the power (USB has four
wires – one for power, one for ground, and two for bi-directional data). Once you have the
two wires you then just add a plug and voila it can now power the Ethernet hub. So USB
provides a nice way for distributing power and data from a single source, whereas before you
needed to run them separately with all the problems described before as well.

The easiest way to take advantage of USB is to connect all your legacy devices up with
converter dongles. Be warned though that all dongles are different and there are no standards
for how a serial port converter must be implemented. If you are buying a dongle to use under
Linux, you must be very careful to ensure you get the right one otherwise it will not have any
drivers. I can recommend the Keyspan series of RS-232 adaptors and have used them for a
number of years. Hugh Bleming wrote an excellent kernel driver for them with documentation
provided by the manufacturer, so it would be good to support a company that provides
information to developers. Keyspan make devices that have one, two, or four serial ports
integrated into a single unit, making it easy to connect up a large number of devices while
using a minimal number of hub ports.

Another interesting device is the FTDI FT8U232AM chip, which provides a serial interface
but as a single chip solution. This device is designed to be integrated into existing devices and
USB enable them with a minimal amount of work. Rather than redesigning your circuit
around a new microcontroller, you can simply add this on with minimal changes. One catch to
the device is that it uses TTL (0 to 5V) rather than RS-232 (-12V to 0V) and so a Maxim
MAX232 converter or similar chip is also needed to use it. We are currently investigating the
use of these chips in our backpack to help miniaturise some of the components and cut down
the amount of cabling by using USB to power the devices where possible. The nicest part
about this chip is that it is fully supported with a Linux kernel driver as well. I have also seen
some pre-packaged USB to serial converters in the shops which had FTDI visible through the
clear case, so these should also work. More information on the FTDI chips can be found at
http://www.beyondlogic.org/usb/ftdi.htm. Make sure that you use the 2.6 kernel with this
device however! The 2.4 drivers are broken and will panic and lock up your machine when
they are intensively used. They appear to work under 2.4 with limited amounts of data, but
upgrading to 2.6 makes them work very reliably.

FTDI and others also make parallel interfaces (such as the FT8U245AM) but I have not used
these and I cannot comment on if they are useful for controlling external devices directly such
as the ledcpumeter program.

6.2 Cheap hacks

The best circuit designs are the ones where you don’t have to do much work. There are many
cases where you can completely avoid building your own circuit and instead can just modify

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 44

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

something you already have. For example, lets say you want a device such as a handheld
plastic gun which contains a trigger as well as some buttons on the side. The easiest way to
implement this is to use an existing USB mouse (which are incredibly cheap) or you may
even have one which has broken wheels inside making it useless. Simply open up the mouse
and throw away all the plastic. Then desolder the micro-switches and run wires off to the
switches you provide to control the device instead. So within 10 minutes (most of it
desoldering) we have turned a mouse into a perfect USB button box. The next step is to buy
something like a toy plastic gun or whatever physical prop you want, and open it up. Now you
can glue the circuit from the mouse into the gun, embed switches into the casing, and now
you are all done. Reading the plastic gun in software is really easy, because it will appear just
like a mouse and so you can use it with all your existing games that already can handle mouse
input. This method does have limitations for some cases however. If you want to have more
buttons than the mouse supports (typically 3-5) then you will have to think of something else.
If the mouse is also being used to control say a GNOME or KDE desktop, button presses from
the gun will be mixed up with the real mouse device. While it is also possible to address each
USB mouse as a separate device, this becomes a bit tricky especially if you are trying to use it
in someone else’s existing application. In these cases, it is probably best to look to one of the
previous options.

6.3 Other interfaces

One of the problems with the interfaces provided by modern PCs is they are becoming harder
for the average hobbyist to interface to as their speed increases. Standards such as Firewire
and USB2.0 require very careful attention to detail even when creating cables to avoid
building up interference. In order to communicate the complex amounts of information
required, specialised chipsets are typically used but these are complicated in themselves.
These chipsets are normally used in the millions by designers at large companies rather than
hobbyists who would only buy in quantities of one or two.

For interfaces that are internal to a PC, an ISA card (the original PC interface from the XT) is
probably the simplest interface and yet is still quite difficult. The next problem is that this bus
has been phased out of new computers and so it will become harder to find motherboards that
actually support it. The reason that developing ISA cards is complicated is because you must
build a circuit to interact with the bus, and if you make a mistake then you can either destroy
your motherboard or at least crash your machine. The next step is to write a kernel level
driver to interface to the card to allow user applications to access it. These things are all quite
difficult and if you can avoid it by using a serial or parallel port, then for simple applications
you should avoid it.

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 45

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

7 Conclusion

In this tutorial, we have covered a wide range of topics that are useful for people who want to
hack up their own interactive 3D environments at home. We worked through the following
topics: configuring a distribution, OpenGL implementation under Linux, using OpenGL to
display video, capturing video using both V4L and video1394, performing vision tracking
using ARToolkit and OpenCV, and developing custom hardware devices as interfaces. While
I gave a few examples of things that I have built in the past, the next step is for you to go forth
and take this knowledge and build other cool devices. You will have to think of your own
ideas though, and I look forward to hearing about them on Slashdot or the next LCA in the
near future some time. If you are interested in research work then perhaps consider studying
at university or if you’ve done that then consider postgraduate education where you can apply
your knowledge to developing really interesting new ideas. So have fun with your computer
and explore some of the exciting possibilities that are available to you.

Good luck and don’t fry your computer!

regards,

Wayne

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 46

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

8 References

Tutorial Home Page
http://www.tinmith.net/lca2005

Wayne Piekarski's Home Page
http://www.tinmith.net/wayne

Wayne's APT Debian Package Repository
http://www.tinmith.net/debian

Project Tinmith
http://www.tinmith.net

School of Computer and Information Science, University of South Australia
http://www.cis.unisa.edu.au

Wearable Computer Lab, University of South Australia
http://wearables.unisa.edu.au

ARQuake Project
http://wearables.unisa.edu.au/arquake

DRI Project
http://dri.sourceforge.net

XFree86
http://www.xfree86.org

Linux on laptops
http://www.tuxmobil.org

OpenGL documentation
http://www.opengl.org/developers/documentation

OpenGL red book free electronic version
http://www.opengl.org/documentation/red_book_1.0

OpenGL red book examples
http://www.opengl.org/developers/code/examples/redbook/redbook.html

Nate Robbin’s OpenGL examples
http://www.xmission.com/~nate/tutors.html

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 47

Tutorial Notes – Building User Interfaces With Video and 3D Graphics For Fun and Profit!

Coin Inventor
http://www.coin3d.org

OpenVRML
http://www.openvrml.org

OpenSG
http://www.opensg.org

OpenSceneGraph
http://www.openscenegraph.org

Beyond Logic hardware interfacing
http://www.beyondlogic.org

ARToolkit home page
http://artoolkit.sourceforge.net

OpenCV home page
http://www.intel.com/research/mrl/research/opencv

Mike Romberg’s LED CPU Meter download
http://www.ibiblio.org/pub/Linux/system/status

Wayne Piekarski – Linux Conf Au – Canberra, ACT – April 2005 48

