
Lightweight User Interfaces for Watch Based Displays

Peter Hutterer†, Mark T. Smith‡, Bruce H. Thomas†, Wayne Piekarski†, and John Ankcorn‡
†Wearable Computer Lab

School of Computer and Information Science
University of South Australia

Mawson Lakes, Adelaide, SA, 5095, Australia
office@who-t.net

bruce.thomas@unisa.edu.au
wayne@cs.unisa.edu.au

‡Hewlett Packard Labs
Hewlett Packard Corporation

1501 Page Mill Rd
Palo Alto, Ca 94304, United States of America

msmith@hpl.hp.com
jca@hp.com

Abstract
Ubiquitous mobile computing devices offer the
opportunity to provide easy access to a rich set of
information sources. Placing the display for this
computing device on the user’s wrist allows for quick,
easy, and pervasive access to this information. In this
paper we describe a user interface model and a set of five
applications we have developed, with the aim of
providing a user interface that supports lightweight
interactions. Our goal is to make our pervasive watch as
simple to use as a common wrist-watch worn today.

Keywords: Ubiquitous computing, user interfaces, watch
based computing, mobile computing.

1 Introduction
Watches have been around us for several centuries. In the
19th century, the watch gradually moved from the pocket
to the wrist, thus being visible at all times (Martin 2002).
Digital watches appeared with additional functions such
as a stop-watch and alarms. There are a number of
esoteric watches that provide features such as compasses,
phone books, and GPS, but the purpose of the watch is
still mainly (and often solely) to show the time.

Several years ago Personal Digital Assistant (PDA)
technologies became readily available. They have
become quite popular and are widely used in the business
domain to improve personal organisation. These PDA’s
already have more processor performance than a desktop
PC had just a few years ago. The applications they
support are not limited to the Personal Information
Management (PIM) domain. Video playback, office
applications, and games are standard nowadays, and even
telephony and Augmented Reality (Geiger, Kleinnjohann
et al. 2002) is possible with the newest models. PDAs are
designed to be carried in a pocket of the user’s clothing,
and removed from the pocket and held in the hand for
operation. Recently, a number of commercial watches
have started to implement some PDA functionality on the
wrist, but these platforms are quite limited.

In this paper we tried to answer the question – “Now that
Bluetooth allows your coffee maker to communicate to
your watch - what would they talk about?” The answer
we came up with is – “Who is going to tell Bruce his

coffee is going to be twenty minutes late this morning?”
One solution to this question is to leave the computing in
the user’s pocket and bring only the display onto the
wrist. We have constructed a prototype for a new watch
which contains only a display, limited processing
capability, and (in the current version) no input devices.
Bluetooth is used to communicate with an external device
which we call a Personal Server (PerServ) that performs
the processing. Any future input devices on the watch
will be processed using the PerServ rather than the watch
itself. The current prototype is shown in Figure 1, which
is at the desired size (the microcontroller and Bluetooth
modules are mounted under the display) but still needs to
be packaged into a watch-style casing.

For our watch architecture, we leverage the power of
handheld computers without having to limit our
capabilities to a processor that can fit inside a watch
housing. This paper describes our Personal Server
architecture - a PerServ is an application operating on an
additional hardware device to offload most of the watch's
processing tasks. The PerServ is responsible for all
complex program logic, and the watch device only
receives, decodes, and displays raw image data.
Connections to external data sources such as the Internet,
other computers, or even household devices are always
between the PerServ and the data source, and not the
watch device itself. The watch is only connected to the
PerServ, and even external input devices connect to the
PerServ instead of the watch. Figure 2 shows an
illustration of this concept. From this separation the
following advantages are expected:

Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the 6th Australasian User Interface
Conference (AUIC2005), Newcastle. Conferences in Research
and Practice in Information Technology, Vol. 40. M.
Billinghurst and A. Cockburn, Eds. Reproduction for academic,
not-for profit purposes permitted provided this text is included.

Figure 1 - Current watch prototype containing an
LCD screen, MSP430 microcontroller, Bluetooth

radio, and a temporary debugging cable.

1) Less processing power is needed on the watch,
and therefore reduced energy requirements while
the software is running.

2) The reduced computation allows simpler, more
energy-saving, and cheaper hardware to be used
for the watch.

3) By offloading tasks to a more powerful device,
faster response can be given for complex
applications.

4) Increased range and higher bandwidth for
connectivity to the Internet and other devices.

5) A simpler interface for application programmers
to use the watch as an output device.

6) A simpler way to install applications that can be
used on the watch.

7) A separate and more powerful device would
allow more sophisticated applications to be
operated than is possible on the watch hardware
alone.

In (Uemukai, Hara et al. 2002), a concept is described
where a mobile screenless device makes use of brainless
ubiquitous displays for displaying data. Our PerServ
concept is similar to Uemukai et al., except that the
remote display is carried with the user all the time. The
concept can also be compared to the operation of SunRay
terminals where they are dumb terminals that only
process user input and screen output (Sun Microsystems
2004). The SunRay terminal receives simple frame buffer
updates over a network, but the actual processing of X11
based applications is performed by X server “clients”
running on a machine that services a set of machines. Our
PerServ concept prepares the image data for the watch
and sends it over to the watch for display only, which
makes it a simplified implementation of the SunRay
architecture.

The remainder of this paper starts with a description of
the latest generation of watch technologies. This is
followed by a more in depth explanation of the PerServ
architecture and user interface framework. Five
applications are presented to show different features of
the PerServ and the user interface models. The paper
finishes with some concluding remarks and a description
of future work.

2 Advanced Watch Technology
Several projects have attempted to replace the watch with
a multi-functional computing device. Research work has
also been performed in the measuring of the social weight
of a watch device combined with a PDA (Toney, Mulley
et al. 2003). “Social weight” measures the impact the use
of an item has on social interaction between two or more
people. Additionally, other authors (Narayanaswami,
Raghunath et al. 2001) ask the question of what
applications an all purpose computer-in-a-watch could be
used for. Their list of applications ranges from simple
time keeping to health monitoring and games. In this
section, we will give a short overview of some of the
watches on the market and their important features. This
is a selection of complex computerised watches that are
indicative of the various design philosophies currently in
use. The current limitations of these watches are then
discussed.

2.1 Commercially Available Watches
Of the six different watches discussed in this section, five
are commercially available while the IBM Linux
Wristwatch is a research prototype. All six watches have
slightly different functionality, and Table 1 depicts a
number of the different features provided.

2.1.1 MatsuCom OnHand PC
The Matsucom OnHand PC was introduced in 1999
(Matsucom 2004) and has a monochromatic display of
102x64 pixels. A set of over 30 programs is preinstalled,
containing different clock faces, a world clock, PIM
features, and even games. The OnHand PC runs a custom
operating system named W-PC-DOS and provides a rich
API for programmers. Synchronisation is implemented
using a serial cradle and specialised software, and
wireless connections are possible via an infrared
interface. Seiko also manufactures the OnHand PC under
the name “Ruputer”.

2.1.2 IBM Linux Wristwatch
A major goal of the IBM Linux Wristwatch project
(Narayanaswami, Kamijoh et al. 2002) was to build a
wrist computer with a standard operating system instead
of one that uses custom developed low-level code. The
final design incorporated a Linux kernel which was
ported to the StrongARM processor and watch hardware.
The graphical interface is rendered using a standard X-
Windows server (Scheifler and Gettys 1986) which is
commonly used on Linux platforms. Modifications were
made to the X server, kernel, and support libraries to fit
the code within the watch's limited memory and storage
resources. There are two different versions of the watch:
first version has a 96x120 LCD in portrait format, and the
second version a VGA OLED in landscape format. Both
versions have touch-screens divided into four parts,
acting as button and jog-wheel input devices. Bluetooth
and infrared interfaces are provided for connectivity, and
a microphone and a small speaker are used for audio
input and output.

2.1.3 Fossil Wrist PDA
Fossil's Wrist PDA is a small computer based on PalmOS
4.1, and therefore the PIM applications are compatible
with standard Palm PDAs. The interaction with the

��������

���	
���������

�������
���������

������	
������

�	���

����
������

Figure 2. An overview of the Personal Server design,
showing our separation concept.

device is performed over a 1'' touch screen display with a
stylus, in a similar way to normal-sized PDAs. Data may
be downloaded onto the watch via an infrared connection
for synchronisation.

2.1.4 MSN Wrist Net
The MSN Wrist Net approach is quite different from the
previously described watches because very little
processing is performed on the watch. These watches are
a part of Microsoft's Smart Personal Object Technology
(SPOT) initiative (Microsoft-Research 2004). The goal is
not to have a miniature computer on the wrist, but instead
more of a digital equivalent of a radio. The watch is able
to have information sent to it via FM radio waves from
preconfigured channels, but no other connectivity is built
into the watch. Since the information is broadcast to all
watches and is filtered for the user, it is not completely
personalised. Limited personalised information is
available via receiving MSN Messenger messages and
schedules over a plug-in for Microsoft Outlook. Due to
the radio broadcast transmission method used, the
delivery of the messages cannot be guaranteed to be
reliable or in real-time.

2.1.5 Timex USB Datalink
The Timex Datalink tries to form a balance between a
sports watch and a PDA (Timex Corporation 2004). It
provides standard time keeping functions such as stop
watches, alarms, and different time zones, but also the
possibility of saving personal schedules and telephone
numbers. The display of the Datalink is not a purely dot
matrix based LCD like the previously mentioned watches,
but instead contains a seven segment display and two dot
matrices (11x5 and 42x11 pixels). Synchronisation is
performed via USB using either custom software or a
Microsoft Outlook interface. When the watch is being
worn on the wrist, there is no synchronisation possible
because no wireless interface exists. Editing schedules
directly on the watch is not possible with the limited user
interface and processing capabilities available.

2.1.6 Field Technology CxMP Smart Watch
The Smart Watch manufactured by Field Technology
CxMP contains a 256 colour LCD with 72x64 pixels and
comes in several different colours for the youth market
(Field Technology CxMP Ltd. 2004). The basic software
configuration consists of a scheduler, timer, stopwatch,
image viewer, and melody player. The watch can be
synchronised using the provided software but does not
interface to existing applications. Synchronisation is only
performed using a serial cable and is therefore not
possible while wearing the watch on the wrist.

2.2 Limitations of current watch designs
This section has introduced several of the latest watch
devices available, but all of them still contain a number of
limitations that need to be overcome before this
technology will become practical. This subsection will
analyse these problems, and Table 1 compares the
features of all six devices.

A major limitation of these watches is the high power
consumption and the constant dependency on fresh
batteries. Apart from the Timex Datalink USB, the life of
the battery is typically measured in hours, especially
when the watch is being actively used. While graphical
user interfaces and operating systems are nice features,
they consume a lot of power to operate. With short
operating times, these watches must be recharged
regularly to remain operational. The user has to make an
effort to ensure that they recharge the watch often, similar
to recharging PDAs and mobile phones. The Timex USB
Datalink watch is unique in that it will operate for two
years with one battery, but this is at the cost of much
more limited functionality with a less powerful processor.

The speed of the processor in the watch is a major
contributor to the amount of power consumed from the
battery. By reducing the clock speed, battery power can
be saved, but this comes at the expense of functionality.
Specific CPU designs are also more power efficient than
others, and so selecting the correct platform is very
important. For certain operations like reading in large
streams of network data or processing video, some CPUs
may not be adequate for this and therefore this
functionality will not be possible. Using a more general
purpose CPU such as in the IBM watch ensures that
standard programming tools can be used, while more
power efficient designs tend to require specialised APIs
or assembly language to use.

The design of the user interface should have power usage
in mind as well - power can be saved by keeping the
number of lit up pixels as low as possible. The developers
of the IBM watch (Narayanswami and Raghunath 2000)
describe a number of considerations such as different
fonts and layouts which can help to improve power usage.
In Energy Trade-offs in the IBM Wristwatch Computer
(Kamijoh, Inoue et al. 2001) several conventional watch
faces are listed to show the relation of pixels in use
compared to the battery usage of the display. The manual
for the Fossil Wrist Net also states that “simple watch
faces [...] take less power than elaborate watch faces,
such as those that use animation” (Fossil 2004). The
Smart Watch saves power by disabling the colour display
after a fixed timeout, but this does not allow the watch to

Vendor Matsucom IBM Fossil

Device OnHand
Computer

Linux
Wristwatch

Wrist Net

Battery life 2 days 2 hours min. 2 days

API C (proprietary) C (Linux) n/a

Range infrared ca. 10 m Radio based

Buttons 4 4 touchscreen 5

Other input Joystick n/a n/a

Vendor Fossil Timex Field Tech

Device WristPDA Data Link
USB

Smart Watch

Battery life 4 to 5 days 2 years [2] n/a

API PalmOS API Assembler n/a

Range infrared n/a Infrared

Buttons 3 3 5

Other input rocker wheel
& touchscreen

n/a n/a

Table 1. Commercially available watches comparison.

be viewed. The biggest power savings can be made by
removing the need for a back light. Reflective and
transflective LCD displays exploit ambient light for pixel
illumination, while backlit and LED displays actively
emit light which allows the use of the display in darkness,
but can consume a large amount of power.

Providing an interface so a watch can share data with
other devices is a difficult problem. The use of serial
cables or infrared makes the device difficult to connect to
while it is being worn by the user. The use of network
technology such as Bluetooth allows truly wireless
capability to a distance of a couple of metres, although
with the associated extra power drain. Maintaining a
permanent Internet connection over Bluetooth remains
difficult however, with a mobile user moving in and out
of the short range available.

Interaction with watch devices is quite similar amongst
all the available designs, mimicking standard watches
with buttons mounted on the outside. The Matsucom and
Fossil watches implement extra interfaces such as small
joysticks or rocker switches for scrolling through
information. The IBM watch implements a touch screen
for button-like functionality, and the Fossil watch
supports a stylus although it is difficult to operate in a
limited area. A good alternative for input would be
speech recognition (Narayanaswami, Kamijoh et al.
2002), although with current technology it is not possible
to implement this on a low powered device yet.

3 Custom Watch Hardware
For our research, we have developed our own custom
hardware for use as a watch, and use a standard HP iPAQ
as the PerServ platform. This section describes this
hardware in detail. This watch hardware forms part of the
architecture overview shown in Figure 2.

3.1 The PerServ Device
The PerServ software operates on an iPAQ h5450
running either Linux or PocketPC 2002, and it has
enough computing power along with the ability to support
wireless technologies such as Bluetooth and WLAN.
Since the operating system abstracts the hardware, we
were able to implement the PerServ in a way that was
mostly hardware independent. This enables us to port the
same software onto a number of different devices in the
future. Figure 3 depicts how applications are insulated
from the hardware on the PerServ device. The application
uses a plug-in API that is tightly connected with the
PerServ framework. Access to the watch hardware is
performed by the OS on the device. The PDA provides all
input processing functionality for this version of the
watch, since the watch itself is a pure display device and

does no processing of its own. In the future we plan to
add simple button and finger mouse controls (Hans and
Smith 2003). These input devices will communicate
directly to the PerServ via the Bluetooth module, and the
PerServ then sends updates to the display.

3.2 The Watch Device
As previously mentioned, we have designed our
architecture so that a less powerful processor is required
on the watch, which will result in considerable energy
savings. Our goal is to allow two weeks of operation
without the need to recharge the batteries. The
microcontroller used in our watch prototype is a Texas
Instruments MSP430. The primary reason for this choice
was its low power modes and ease of availability. We
employed the F1491 model that contains 64 Kb ROM for
program code and 2 Kb RAM for dynamic variables
(Texas Instruments 2004). Additionally, it has two serial
Universal Asynchronous Receiver-Transmitter (UARTs)
for connecting to the Bluetooth chip and to the display.
The 16 bit processor operating at 4 MHz needs only 280
µA in active mode, making it a very low powered device.
The MSP430 is programmable with either assembly
language or C. The watch and PerServ system are able to
perform complex tasks via a “parasitic computing”
(Narayanaswami, Raghunath et al. 2001) paradigm.

One of the goals of our project is to allow some form of
video streaming through the watch, and although the
watch CPU is not capable of performing complex
decompression, the PerServ is and so it can transmit
optimally encoded frames to the watch for display. The
display used on the prototype is an Epson L2F50176T00
LCD, shown in Figure 1. The display's resolution is
120x160 pixels with a screen size of 2 x 2.6 cm (1.3”
diagonal), or approximately 150 DPI. The LCD supports
RGB colour and our current implementation supports
either one bit monochrome or 16 bit colour.

For communication between the watch and the PerServ,
we employed the Mitsumi WML-C09NBR Bluetooth
chipset without an antenna. Like the LCD, the Bluetooth
chip is connected over a UART interface with the
maximum wireless data rate being 721 kbps (Mitsumi
2004). The WML-C09NBR is a class 2 chip, allowing a
range of up to 10 m, but we found through testing with a
standard USB Bluetooth adapter the maximum distance
was just three to four meters for reliable operation. One
important goal of our project is to connect the watch to
the Internet. By using a PerServ, technologies like
WLAN may be used indirectly. The typical transmission
power of WLAN is 30 – 50 mW (Golem 2004), which is
considerable for a purely wrist based device. Since
Bluetooth only needs 2.5 mW to operate (Bluetooth SIG
2004), it is much more suitable for miniaturised devices.
By splitting the functionality over two devices, Bluetooth
can be used on the watch and WLAN on the PerServ.
Since the PerServ is carried concealed in the user’s
pockets, the watch is easily within the maximum of range
of the Bluetooth transmitter. The PerServ software then
routes data from the WLAN connection over the
Bluetooth connection to the watch, thus making WLAN
available to the watch without the associated high power
requirements.

Applications

PerServ Plugin API

PerServ Framework

Operating System

Network Stack

Wireless Network

Figure 3. The PerServ system architecture.

4 User Interface Framework
The user interface framework is broken down into a
number of different hardware and software systems. In
this section, we describe the software framework we have
designed to run many different kinds of applications.

4.1 The PerServ Framework
The novel contribution of our watch is not only the
hardware, but the combination of applications and the
easy development of new ones to support a widespread
application domain. We envision many applications
displayed on the watch operating via a mobile PerServ,
such as an iPAQ for example. These applications must
work seamlessly and efficiently.

We have developed an application framework that
facilitates the construction and execution of a broad range
of applications. For each application, two virtual displays
are created, one for local display on the PerServ and one
for the remote display on the watch. The framework
running on the PerServ is a simplified operating system
that is used to control the watch - a traditional operating
system provides an abstraction to the hardware and the
possibility of operating multiple applications
simultaneously. In our framework, there are hardware
abstractions for the display, the touch-screen, and the
keyboard of the PerServ, and also an abstraction for the
display on the watch. Simple calls are provided to access
the display of the watch with drawing functions that can
render graphic primitives and text. This is mandatory
since an application should not have to “know” which
pixels to light up when drawing a line across the display.
The framework ensures that only one application can
send information to the watch at one time, thus keeping
the display content consistent. Figure 4 shows how the
framework handles redraw attempts. Applications (a, b, c)
send redraw requests to the framework, and depending on
the currently active application, the screen is redrawn.
External applications can be used in the framework
through wrapper applications which provide a suitable
abstraction layer.

We have implemented a version of the framework in Java
under Microsoft PocketPC and in C under Familiar Linux
0.7.2; thus the framework is able to render applications
using the drawing functions of Java Swing/AWT or X
Windows. Both libraries are quite simple and provide the
ability to transmit either AWT canvases or X pixmaps,
allowing the use of standard drawing primitives.

One important aspect of the framework is to make
installing and executing new programs as simple as
possible. This is already simplified by separating the
watch and the PerServ. Ideally, no installation routines
are necessary; applications are copied onto the iPAQ and
are available immediately. Un-installing should work as
simple as deleting the application files from the PerServ.
This is solved with a plug-in system in both
implementations. Although it makes updating, installing
and removing applications very simple, this method has a
drawback: the PerServ is completely separated from the
applications and their logic, and it does not know which
application is responsible for which task. However, this
can be solved by adding another auxiliary application that
starts up the requested application on demand.

4.2 Task Manager
As previously mentioned, a framework is provided for the
applications to allow easy access to the watch's hardware.
Each application renders its output to an off-screen
canvas or pixmap. Due to the display size, only one
application can access the display at one time, and the
application to display is decided by the PerServ. The
clock application is the exception to this rule and has a
small fixed area on the display that is not accessible by
the other applications. The Task Manager provides the
functionality to switch applications at runtime. A well-
known approach is to implement a list-based task
manager like the one used in Microsoft Windows, KDE,
and other window managers. We have implemented in
the PerServ a similar concept to change applications on
our watch. The user can view a list of the running
applications and then bring one in the foreground by
using the touch-screen on the iPAQ.

A more common method to change applications would be
through the controls on the watch. To realise the task
manager on the watch at least one button is required. By
pressing this button the task manager is started and shows
the applications. While holding the button the task
manager cycles through the applications and on release
the currently selected applications appears on top. Early
cell phones used this method to write SMS messages. A
proper speed to scroll is required, and must be
customisable to some extent by the user. A second
solution of using two or three buttons is preferable here:

�
��

��
�	

�
��

��
�

�

�

	

����	��� ����	���

����	���

�

� ������	

	
��	����

����	���

Figure 4. The PerServ framework.

Figure 5. The task manager application running on

the current watch prototype.

one button to start the task manager and to confirm the
selection and one or two buttons to cycle through the list.
Figure 5 shows the watch prototype displaying a list of
tasks currently running on the PerServ, but since there is
currently no input capability on the watch it is not
possible to select the task using the watch.

4.3 Smart Application Switching
Our watch system supports the switching of applications
automatically depending on the priority. To help define
the priorities, we have defined four categories of
applications:

• The first category of applications is those that
display for a very long time but do not have
important information at one specific point in time.
An example would be a video stream from a baby
monitor. While the information provided over a
long time is relevant, the information at one specific
second is not especially important or different from
the previous.

• The second category is an application that provides
highly important information but only for a very
short time. Email notifiers are in this class of
applications - within five seconds after an email has
arrived, this information is very valuable, but once
read there is no information worth displaying until
the reception of the next email.

• The third category of applications is those having
information useful for a limited amount of time. A
video stream sent from a door bell has important
information over a time of about 30 seconds until
the visitor opens the door or leaves.

• The last category of applications is when the value
of the information changes over time. A countdown
on a timer application for example is more
important when it is close to the end than at the
start.

Switching applications automatically is especially
important when there are no input devices connected to
the watch. It allows the watch to respond to the user’s
context without the need for the user to interact with the
PerServ device.

5 Example Applications
In this section, some applications are described that were
implemented in either the C or the Java version of our
framework (or both). Each of these applications is an
example of how to process different types of input data
for a practical use. The Timer application is an example
of the watch system connecting to common household
appliances. The MP3 Title Display application shows
how to connect the PerServ with an external application
that plays music. The RSS Feeds application is an
example demonstrating how applications can fetch live
data from the Internet such as news feeds. In contrast, the
Alarm application demonstrates the use of file-based
input data containing appointments. Finally, the Baby
Monitor application implements a still image and
streaming video capability. A clock application is always
running parallel to the others, showing the current time
and date on the bottom of the display.

5.1 Direct Hardware Communication - The
Timer

The PerServ is designed to be able to communicate
directly with other hardware devices. We implemented a
flexible timer application to potentially operate with
many common household devices. This timer shows that
future household devices only need slight modifications
to be able to communicate and make use of the PerServ
architecture. The scenario we used for inspiration was
someone watching television, who decides to make some
microwave popcorn in the kitchen. During a commercial
break, the user leaves the television room to place a
packet of popcorn in the kitchen microwave oven. The
user sets the timer on the microwave oven and presses the
start button. Once the oven starts to cook the popcorn, the
oven communicates with the user’s PerServ to start a
countdown timer displayed on their watch. This way the
user may return to view the television, and their watch
will inform them when the popcorn is ready.

The Timer application is a proximity-based interaction to
support countdown timer functions. The goal of this form
of application and interface is to be automatic, invisible,
and lightweight. The actions of the user dictate the start
and duration of the timer. Once the timer has started, the
users return their focus to a different activity. The
countdown is displayed on their watch and the user does
not have to stay within audible or visual distance of the
household appliance being timed. The extension to
existing household appliances to support such
communication and functionality is fairly simple to
implement. Cheap microcontrollers are able to send these
simple messages over a Bluetooth network, and Bluetooth
chipsets are fairly common nowadays. More and more
household devices already have network connectivity and
we expect that in the future most appliances will be
connected to a local or global computer network.

The use of a countdown timer may be confusing when
multiple devices have started timers; for example a coffee
machine or a microwave oven could use the watch to
show the remaining time simultaneously. To overcome
this problem, the household device needs to send
additional information to the timer application so that the
PerServ can differentiate between the update messages.
We have designed a simple message format to support the
Timer application, and the format is shown in Figure 6. In
our implementation, a message has seven or more bytes,
where the first two bytes are used as an identifying
sequence. Four bytes are used to define the time in
seconds, thus allowing a maximum of over four billion
seconds (or approximately 136 years). This enables a
range of devices with diverse countdown times to use the
same message type. In addition to those bytes, the packet
specification allows an identification string of a
maximum length of 255 characters to display the
symbolic name of the source of the timer packet.

0 15 16 31

0xFF 0xFF Len Sec1

Sec2 Sec3 Sec4 …

Figure 6. Structure of a timer packet, containing
header bytes, number of seconds remaining, and the

identifier string of the device.

The timer application is not necessarily locked to
providing timing information for a physical device. Since
the message type is quite abstract, a software application
can use the Timer to display remaining time and
additional information. For example, when downloading
a large file off of a web, the remaining time and amount
of data downloaded is displayed to the user on their
watch. This frees the user from sitting in front of the
computer to observe the progress of the download. The
timer application is built to show multiple countdowns at
the same time, sorted by finishing time, see Figure 7. The
development of this application was quite simple because
the plug-in API we have developed is designed to abstract
away most of the functionality like the GUI and the
network interface. We emulated the different household
devices with a desktop PC workstation with a standard
USB Bluetooth adapter.

5.2 Communicating to other Applications -
MP3 Title Display

To make a watch-based display system useful, external
applications should be able to easily communicate with
PerServ applications. One example is the MP3 Title
Display application we have developed that consists of
both a PerServ application as well as a plug-in for the X
MultiMedia System (XMMS). XMMS is a popular MP3
Player for Linux, which provides a rich API for
extensions. The plug-in retrieves information about the
current song and passes it on to the PerServ application.
An example of song information displayed on the watch
is shown in Figure 8.

The communication between the MP3 Title Display
application and the XMMS plug-in is quite simple to
implement. Information about the music playing on
XMMS is polled once per second; this includes such
information as the artist, the title, the length of the song,
and the position in the play list. This information is sent
as a set of UDP packets, thus allowing the plug-in to be
always active even though no PerServ application is
connected. Information about the song is contained in
seven individual UDP packets which contain a name and
value pair, as shown in the following example:

Packet 1: ARTIST: Ben Harper
Packet 2: TITLE: Faded
Packet 3: PLAYLIST: 409
Packet 4: POSITION: 339
Packet 5: TOTALTIME: 289
Packet 6: TIME: 118
Packet 7: PLAYING: 1

This example shows that the current song is “Faded”
from the artist “Ben Harper” at position 339 of 409
possible songs in the play list. The song has been playing
for 1:58 minutes (118 seconds) already, and the length of
the song is of 4:49 minutes (289 seconds). The last line
defines whether XMMS is playing (1) or stopped/paused
(0) at the current moment.

The ability to communicate with non-PerServ
applications extends the functionality of the watch to a
larger application domain. A similar system to the MP3
Title Display could be used to connect the user’s mail
client with an application on the PerServ. It would be
possible to get information about the user’s mailbox
without the need to implement protocols such as POP3 or
IMAP. Modern e-mail clients, such as Mozilla and
Outlook provide a plug-in system that allows for such a
feature. The communication between the PerServ
applications and the external application could happen
either via networking or via a common shared library. For
simplicity and to ease portability, the MP3 Title Display
communicates with the XMMS plug-in via a network.
This allows the MP3 Title Display to communicate with
other players with plug-in interfaces such as WinAmp.

5.3 Live Data Streams - RSS Feeds
Live data streams are vitally important to many business
people today. For example, data streams can consist of
the latest stock quotes or headline news. A widely used
method is Really Simple Syndication (RSS) (Harvard
Law 2004), a dialect of XML that conforms to the XML 1
standard. A large number of news sites support RSS, such
as BBC, The Wall Street Journal, and the New York
Times. Smartmoney.com provides a free RSS service for
financial information.

Figure 7. The timer application showing five different

timers in operation.

Figure 8. The MP3 title display application showing
the current song in progress and song information.

A big advantage in RSS's XML structure is that it
supports the use of pack-and-go XML parsers without the
need to implement an individual parser. This facilitates
the use of more than one stream at the same time.
Aggregation of RSS feeds is important as free feeds often
have low update rates. Combining different feeds with
different update rates allows for an overall better update
frequency.

The output of an RSS news feed can be either graphical
or textual, depending on the user's context and the
information itself. If it is necessary to monitor stock
prices over a longer time interval, a graphical interface
such as line diagrams may be preferred. However, if there
are too many lines on the diagram, it may become
difficult to read. Complicated graphs on a display as
small as the one on the watch may prove difficult to
provide a proper legend. In this case it is better to display
the information in text format.

When the RSS feed only provides textual data, the
decision is then to either represent the data as a ticker or
as fixed text blending from time to time. With fixed text,
the problem on small displays is that longer headlines are
difficult to render. It is possible to display about 15 to 20
words on the display, depending on the length of the
words. Text has to be optimised for the small display size,
but in general most news feeds are not optimised by
default. Especially long words would have to be
separated in two, but to follow grammatical rules,
computationally intense algorithms are required. This
makes the fixed text less attractive for longer messages.

It is well known that animations on a user interface may
be distracting to the user (Baecker, Small et al. 1991;
Thomas and Calder 2001). However, news feeds do not
suffer from this problem as they require the full attention
of the user, and the animations on the watch will typically
not be largely visible to the user at other times. Setting a
proper scrolling speed for the ticker is difficult to
determine for all users. We found it challenging to find a
relation between too fast to read and too slow to wait for
the next news line. The best solution to this is to let the
user define the scrolling speed as every user will find a
different speed optimal. Our application has a
configuration file for this to be persistent over multiple
sessions.

Another way of presenting the data would be using audio
output. This would require speakers or headphone plugs
on the watch, which are both non-existent on the current
prototype. Also, the social weight of an audio enabled
application on the watch is different to an application
using purely visual output.

5.4 Personal Information Management -
Alarm Clock

In contrast to the applications previously mentioned, the
Alarm Clock application is an example of how a
permanent connection to external devices and/or
networks is not required (using only a mobile PerServ).
This is necessary for mobile situations, such as when on
public transport where there may be no Internet
connection. Instead, the Alarm Clock uses a data file to
retrieve the user's schedule. This data file is an exported
file from the PIM application KOrganizer. The Alarm

Clock uses the priority redraw to display upcoming
events when necessary. In addition, it uses the PerServ's
APIs to fetch information from the global application
configuration file. Synchronising the Alarm Clock with
the user's organiser is simple. KOrganizer exports “.ics”
files, which can then be copied onto the PerServ directly
without modification. Our implementation had
KOrganizer operating on a standard PC workstation,
connecting to an iPAQ operating as the PerServ. An
example of the Alarm application running on the watch is
shown in Figure 9, with three appointments shown.

When the Alarm application is active, the application
shows the next five entries within the next two hours.
Thirty minutes before a scheduled event is due, the event
will be displayed with high priority to notify the watch
user.

5.5 Video Streaming - Baby Monitor
The third generation of mobile phones has shown the
appeal of highly mobile video. We propose an alternative
to using the phone's display, which is to display the video
stream on the display of the watch - the user can use their
handset as an audio input device and the watch as a video
output device. Video streaming is useful in other domains
as well, such as doorbell cameras or baby monitors to
survey a child while it is sleeping in its bed. This section
describes a generic video transfer application from the
PerServ to the watch.

There are a number of challenges to providing video
streaming to a watch device. The first is that since there is
no camera mounted onto the watch, the remote user will
not receive any live video from the local user. This might
not be important in most situations, though it is in
business conversations where this might be considered
impolite. The second problem occurring with streaming
video is the required high data transfer rate, which is
typically greater than what hardware like the MSP430
and Bluetooth can support. Only with complex
compression codecs and low frame rates is it possible to
transfer video without introducing large delays or
preventing real-time operation. Since the watch uses only
a very simple CPU, it is impossible to decode typical
video compression algorithms such as MPEG-4 without
dedicated hardware support. Additionally, in the case of

Figure 9. List of current appointments on the watch.

video telephony, the video would have to be transferred
by the PerServ device twice, from the phone to the
PerServ and then from the PerServ to the watch. If
enough Bluetooth bandwidth was available, it would be
possible for our PerServ to support a separate Bluetooth
enhanced video camera. This detachable video camera
could be placed in other locations that might be more
convenient than the user’s wrist.

In our watch system, we can only support applications
where the required frame rates are very low, such as in
the case of a baby monitor. Although the camera might
provide 25 fps or more, it is possible to drop frames down
to a frame rate of 1 fps or even less without losing much
of the information. For observing a sleeping baby, one
frame per second is satisfactory, and the PerServ can even
monitor this and only send new frames if any movement
occurs.

Dropping frames to reduce the frame rate has to be done
as early as possible to maintain a consistent reduced
frame rate. If one frame needs one second transfer time, a
25 fps video stream will take 25 seconds to transmit one
second of video over the network. We desire real-time
operation for our application, as mentioned previously. In
our implementation, we have a Linux PC which captures
video frames, transmits them to the PerServ, which then
transmits them to the watch. The implementation on the
Linux PC uses the Java MediaFramework and monitors
the transfer rate and drops frames dynamically depending
on how fast the PerServ and watch are able to handle
them. The PC software reduces the video frames to fit the
size of the LCD and packs it in a format that is ready for
display directly to the watch’s LCD, so the PerServ
simply acts as a router.

6 Conclusion
In this paper we have presented lightweight user
interfaces for watch based displays, which are simple to
develop and use. Our design philosophy was that our new
watch device should not be more difficult to use than the
user’s current watch. We have taken the approach that
there will be no one killer application in the watch
domain, but an accumulation of functionally and
contextually appropriate applications. The ability to
support a vast array of applications requires an open API

and an open set of protocols. The open architecture we
have developed allows easy development of applications
from a wide community of software developers. It is only
by allowing multi-vendor solutions will the quantity and
quality of applications become adequate enough for the
consumer to make use of this technology. We see HTTP
as a model of how a simple protocol facilitates the ability
to provide functionality across a number of application
domains and hardware platforms. Where simple protocols
are appropriate, they assist in the adoption of new
technologies.

The watch is a display-only device, and as such a very
simple protocol is able to support all the functionality
required. This simplicity allows for the design and
construction of a low cost physical platform for the watch
that may connect to a number of different PerServs. As an
example, we envision the user’s mobile phone providing
personal server support in the future.

In answering our original question “Who is going to tell
Bruce his coffee is going to be twenty minutes late this
morning?”, we have developed the following: a custom
wrist display device appropriate for a watch, a personal
server software system, a lightweight framework to
develop and execute watch-based applications, and a set
of five example applications. A prototype for a new
watch which contains only a display, limited processing
capability, and no input devices was constructed. We
employed Bluetooth to wirelessly communicate with an
external device (a Personal Server) that performs the
processing.

Our lightweight framework allows developers to build
their watch applications using traditional development
methods, and with interfacing to the different applications
kept very simple. For example, we use information push
technologies and/or proximity of initiate an application.
In this paper we presented the following five example
applications:

1. The Timer application communicates with
common household appliances to initiate a
countdown timer displayed on the watch.

2. The MP3 Title Display application
communicates with an external application that
plays music and the watch displays information
about the current song playing.

3. The RSS Feeds application displays live data
feeds from the Internet on the watch.

4. The Alarm Clock application communicates
with a PIM and displays on the watch the user’s
current appointments.

5. The Baby Monitor application implements a
streaming image and video capability.

The two major areas of investigation for the watch
platform in the future are a more powerful processor with
similar power consumption specifications and a
replacement for Bluetooth wireless networking. The
Bluetooth protocol is quite burdensome in terms of
software support, and we feel that much lighter-weight
wireless solutions such as ZigBee (Craig 2004) would be
more appropriate.

Figure 10. Example of a picture shown on the display.

7 Acknowledgements
We would like to thank HP Labs for their support on this
project. This project was made possible by the continuing
support of the School of Computer and Information
Science at the University of South Australia. Aaron
Toney provided a great sounding board and wealth of
information about programming with low powered
devices. We would also like to extend a big thank you to
all the people in the Wearable Computer Lab for their
ongoing support.

8 References

Baecker, R., I. Small, et al. (1991). Bringing Icons to
Life. ACM CHI '91 Conference on Human Factors in
Computing Systems, ACM.

Bluetooth SIG, I. (2004). Bluetooth Core Specification
https://www.bluetooth.org/spec/.

Craig, W. C. (2004). Zigbee: “Wireless Control That
Simply Works”, ZigBee Alliance
http://www.zigbee.org/resources/documents/2004_Zig
Bee_CDC-P810_Craig_Paper.pdf.

Field Technology CxMP Ltd. (2004). Smart Watches.
Room 2714-2716, 27/F, Hong Kong Plaza, 186-191
Connaught Road West, Hong Kong http://www.smart-
watches.com/.

Fossil (2004). Wrist Net Reference Guide
http://www.fossil.com/text/content/tech/downloads/wr
istnetreferencequide.pdf.

Geiger, C., B. Kleinnjohann, et al. (2002). Mobile
AR4ALL. The First IEEE International Workshop
Augmented Reality Toolkit.

Golem (2004). WLAN-Karte mit 100 mW Sendeleistung
von Allnet http://www.golem.de/0304/25188.html.

Hans, M. C. and M. T. Smith (2003). A Wearable
Networked MP3 Player and "Turntable" for
Collaborative Scratching. Seventh IEEE International
Symposium on Wearable Computers, White Plains,
New York, USA, IEEE.

Harvard Law (2004). Really Simple Syndication (RSS)
Specification, Berkman Center,
http://blogs.law.harvard.edu/tech/rss.

Kamijoh, N., T. Inoue, et al. (2001). Energy Trade-offs in
the IBM Wristwatch Computer. 5th International
Symposium on Wearable, IEEE.

Martin, T. L. (2002). Time and Time Again: Parallels in
the Development of the Watch and the Wearable
Computer. 6th International Symposium on Wearable
Computers, IEEE.

Matsucom, I. (2004). onHand/Ruputer. 1642 South
Parker Road, Suite 212, Denver, Colorado, 80231
U.S.A.

Microsoft-Research (2004). Smart Personal Objects. One
Microsoft Way, Redmond, WA 98052, USA
http://research.microsoft.com/spo/.

Mitsumi (2004). BluetoothTM Module WML-C09 2-11-
2, Tsurumaki, Tama-shi, Tokyo 206-8567, Japan,
http://www.mitsumi.com/.

Narayanaswami, C., N. Kamijoh, et al. (2002). "IBM's
linux watch: The challenge of miniaturization." IEEE
Computer: 33-41.

Narayanaswami, C., M. T. Raghunath, et al. (2001). What
Would You Do with a Hundred MIPS on Your
Wrist?,, IBM Research Division, Thomas J. Watson
Research Center

Narayanswami, C. and M. T. Raghunath (2000).
Application Design for a Smart Watch with a High
Resolution Display. International Symposium on
Wearable Computing, Atlanta, Georgia.

Scheifler, R. W. and J. Gettys (1986). "X WINDOW
SYSTEM." ACM Transactions on Graphics 5(2): 79-
109.

Sun Microsystems (2004). Sun Ray 1g Ultra-Thin Client
http://wwws.sun.com/sunray/sunray1/.

Texas Instruments (2004). MSP430x13x, MSP430x14x,
MSP430x14x1 MIXED SIGNAL
MICROCONTROLLER. Post Office Box 655303
Dallas, Texas 75265, Texas Instruments

Thomas, B. H. and P. R. Calder (2001). "Applying
cartoon animation techniques to graphical user
interfaces." ACM Transactions of Computer Human
Interactions 8(3): 198-222.

Timex Corporation (2004). PO Box 310, Middlebury, CT
06762, http://www.timex.com/.

Toney, A., B. Mulley, et al. (2003). "Social Weight:
Designing to minimise the social consequences arising
from technology use by the mobile professional."
Personal and Ubiquitous Computing 7(5): 309-320.

Uemukai, T., T. Hara, et al. (2002). A Remote Display
Environment: An Integration of Mobile and
Ubiquitous Computing Environments. Proceedings of
IEEE Wireless Communications and Networking
Conference, Orlando, Florida, USA.

