
Possession Techniques for Interaction in Real-time
Strategy Augmented Reality Games

Keith Phillips and Wayne Piekarski
Wearable Computer Lab

University of South Australia
Mawson Lakes Campus, Mawson Lakes, SA 5095

Australia, +61 8 8302 5070
keith@tinmith.net, wayne@cs.unisa.edu.au

ABSTRACT
There have been a number of interactive games created for
Augmented Reality (AR) environments. In this paper, interaction
techniques to support Real-Time Strategy (RTS) games in AR
environments are investigated. One limiting factor is that the user’s
position within the virtual environment must correspond to their
position in the physical world. If it is obvious to the user there is no
correspondence between the two, the illusion of a consistent
environment will be broken. The primary problem with adapting an
RTS game for an AR environment is that the player will need to
manage a large force of life-sized military units, which cannot be
done effectively if the user is confined to what they can see and how
fast they can move in the physical world. In this paper, we introduce
the use of AR-VR transitions and a new technique that is called
possession, which attempts to address these problems. Possession
essentially gives the player the ability to move inside the head of any
of their units. This allows the user to see everything that is visible to
that unit, and manage their forces with the usual interface even
though they are detached from their own body. The possession
technique allows control of units over large ranges, makes
micromanagement of distant groups possible, and implements
realistic views of the world that match what a user would expect in
the physical world. Our user interface supports a more realistic
interface than is possible in traditional desktop games. Our new
techniques were implemented in an operational AR-RTS game that
we have named ARBattleCommander.

Categories and Subject Descriptors
H.5.1 [Multimedia Information Systems]: User Interfaces –
Artificial, augmented, and virtual realities. H.5.2 [Information
Interfaces and Presentation]: User Interfaces – input devices and
strategies, interaction styles. K.8.0 [Personal Computing]: General
– games.

General Terms
Design, Experimentation, Human Factors.

Keywords
Gaming, Augmented Reality, Interaction.

1. INTRODUCTION
Games that are played in an AR environment have a number of
advantages over traditional desktop games. Players can interact with
the game in an intuitive way using their body, and in previous
studies, users have reported that the use of physical movement to
navigate virtual environments makes the experience more enjoyable
[8]. What games should exploit AR technology? First is the need for
the game to be real-time, so that the problem of needing to negotiate
large areas is not negated by the game pausing at the end of every
turn, giving the player ample time to move or rest as they require.
Most AR games created until now have been based on styles that are
normally played from a first person perspective, be it on a desktop
computer or in real life. This paper describes our investigations into
the development of an AR Real-time Strategy (RTS) game,
ARBattleCommander, for use in outdoor environments, which differ
from previous work in the field.

1.1 Desktop Gaming
Most current AR games are based around first-person interactions
that are essentially simulating real world situations. First-person
Shooter (FPS) games, like the iD software game Quake [12], place
the player in the viewpoint of the main character, and they must
navigate the environment and fight enemies from this perspective. In
contrast with this, RTS games such as the original Dune 2 [32] along
with others such as Warcraft or Command and Conquer, give the
player a disembodied god-like viewpoint that floats high above the
environment. The player uses indirect commands to guide their
forces in the game area. Interactions with their collection of units are
performed using simple orders such as move and attack. An entire
army can be seen on screen at once in many cases.
When a player starts a RTS game, only areas immediately visible to
their units are visible. The rest of the world is covered by a dark fog,
referred to as “fog of war”. Once a friendly unit has seen the area, it
is uncovered for the player to see for the duration of the game. In the
context of the game, this allows players privacy while they are
working within their guarded regions and enables sneak attacks from
enemies. To control units, the player uses a mouse based interface.
Clicking on a unit selects it, and a menu containing possible
commands appears on the left of the screen. The player then selects a
command for the unit(s) to execute, such as move or attack, and then
selects a target in the game field. The unit selected will then carry this
order out until its task is complete or it has been destroyed.
The Battlezone [2] desktop RTS game successfully mixes elements
of both FPS and RTS games. A player can interact with the game as
an RTS, by commanding units around and constructing a base, but
can also move and shoot on foot or in a vehicle from a first-person
perspective. Battlezone does not use an obvious form of occlusion

like the fog of war. The player’s view of the world is sufficiently
limited by their perspective and features of the game to prevent them
seeing things that are far away or concealed.
RTS games also require that users have an exceptional level of
situational awareness. In the instance of the game Dune 2, the player
must always be aware of what is happening throughout all of the area
that they have a controlling interest in. Desktop games afford the
player good situational awareness and precise control by using top-
down or isometric views. These place the player’s viewpoint far
above ground level and give them the ability to rapidly move from
one place to another simply by positioning a mouse cursor at the edge
of the screen.

1.2 AR Versions of RTS
The player’s situational awareness in an AR-RTS game is
constrained by their physical environment. If the physical area the
user is playing in is large and flat they are restricted to movement at
ground level. Playing these games at ground level is difficult for a
number of reasons. In RTS games, the player moves their units by
first selecting one and then specifying a target location on the ground.
Because the player’s viewpoint is only approximately 2 metres from
the ground, they have very little visual clarity as the ground
converges into a singularity at the horizon. This makes precise
selections of points on the ground extremely difficult when they are
not in the immediate vicinity of the player. An AR-RTS game
provides an automatic fog-of-war for the player. They have a limited
field of view because of their ground-level perspective, and are
unable to see any parts of the game that they were not standing near.
To overcome this limited field of view, the user must be able to move
their virtual position independently of their physical position
somehow, so they are capable of seeing areas other than those they
are physically near to. This will require the ability to de-couple the
user’s views of the physical and virtual environments, so that
changing their virtual position will not make any inconsistencies
between the relative locations of the two environments visible. We
believe that once the user is able to detach from their own AR body
into a VR view independent of their physical location it will be
possible to introduce a range of techniques that are otherwise
inappropriate for AR systems.

1.3 Aim
The aim of this investigation is to develop a set of interaction
techniques for our AR-RTS game ARBattleCommander, to
overcome the user’s physical limitations, without disrupting their
perception of a consistent environment. We have extended action-at-
a-distance interaction techniques (similar to those developed for VR)
to overcome these problems in an AR environment.

1.4 Overview
This first section has outlined the research problem and identified a
course of action. The next section will provide a detailed overview of
some of the previous research performed in relevant areas. Section 3
discusses a way to implement VR interaction techniques in an AR-
RTS game, and a new AR/VR interaction technique we have
developed termed possession is presented. Section 4 is an overview
of how we have implemented our AR-RTS game
ARBattleCommander to evaluate these techniques. Section 5
provides details of the informal evaluations that were performed with
the game. Finally the conclusion summarises the work described in
this paper.

2. RELATED WORK
This section contains an overview of related work in the field of AR
games and virtual environment interaction techniques, and is divided
into the following four sub-sections: outdoor augmented reality,
interaction techniques for VR environments, AR interaction
techniques, and current AR games.

2.1 Outdoor Augmented Reality
Azuma [4] defines augmented reality systems as those that contain
the properties: 1) combines real and virtual objects in a real
environment, 2) runs interactively, and in real-time; and 3) registers
(aligns) real and virtual objects with each other. Our research has
focused on visual displays as the primary format, where the user
wears a head-mounted display (HMD) with an orientation sensor
attached. Outdoor AR systems offer some additional problems over
their indoor counterparts, largely in their hardware requirements.
These include power consumption and weight, but another issue
faced in outdoor AR systems is how to effectively interact with the
workspace available. This issue is critical when the system is
potentially using a much larger workspace, like the large playing area
used in ARQuake [29], where walking from one end of the game
zone to the other might take several minutes, or even hours.

2.2 VR Interaction
Three fundamental operations that are typically performed in
interactive virtual environments are flying, scaling, and grabbing, as
described by Robinett [25]. Flying is simply translation of the user’s
viewpoint within the virtual environment, and in Robinett’s
description is movement in the direction that the tracked input device,
like a glove or pushbutton device, is oriented. Scaling is an effective
technique for both navigation and viewing of a virtual world. The
user can scale the environment down to a convenient size to get an
overview, and can then move the centre of scaling and scale the
world back up to easily move to another location. Grabbing is the
ability to pick up and move objects in the virtual world, and also to
rotate it while it is in the user’s hand. Grabbing can be performed
either within arms reach, or at a distance.
There have been many contributions in the area of VR interaction.
Clark developed a surface editor [10] for direct manipulation of
splines using a HMD and a wand; Sachs’ 3-Draw [26] performs the
creation of arbitrary models using direct manipulation of a stylus and
tablet; Liang’s JDCAD [14] pioneered many new techniques such as
lasers and spot lights for action at a distance using 3D input devices;
Butterworth’s 3DM [6] developed new user interfaces for immersive
VR modelling; Forsberg’s work with apertures [11] extended Liang’s
spot lights to use a circular cursor on the hand projected from the
head into the scene; Pierce’s image plane techniques [24] extended
Forsberg’s aperture projection concept to introduce a series of
selection methods based on the projection of the user’s hands and
fingers; Mine’s CHIMP [15] implemented within arms reach
techniques based on proprioception and scaled world operations;
Stoakley’s Worlds-In-Miniature [28] demonstrated remote
manipulation using small copies of the world held within the hands;
Koller implemented orbital view techniques [13] where the user’s
head rotation maps to the position of the viewpoint on a sphere,
constantly aiming toward the centre. Commercial systems such as
MultiGen’s SmartScene [17] implement many of the previously
mentioned techniques. For techniques where the user operates on an
object at a distance at a normal scale, large or close up objects will
typically be easy to operate on. However, when an object is far away
or small, it will be difficult to select due to its projected size.

2.3 AR Interaction
As noted by Azuma [3], because the virtual and physical worlds are
aligned, to move through the virtual world requires the user to also
move through the physical world. This method is used by almost
every outdoor AR system to date, in the form of direct mappings
from GPS coordinates to virtual world location. The user’s
movement is tracked via GPS, and their position in the virtual world
is continually updated to reflect their position in the physical world.
The limitation of linking the physical and virtual worlds together is
that it is difficult to work beyond the scale of the user. If an object is
many kilometres away or very large, the user is not able to physically
reach out and grab it. While previously described techniques are able
to overcome this, they require the link between the physical and
virtual world to be detached through scaling or flying. Previous AR
systems such as Tinmith [23] support the ability to perform
modelling operations at a distance using AR working planes
techniques and tracked pinch gloves. However, even Tinmith relies
on having an object to be selectable from the current viewpoint
without any enhancements, and so restricts the possible range of
operation.

2.4 AR Gaming
A number of different AR gaming systems have been created to date,
the first is AR2Hockey [18]. In AR2Hockey the players wear HMDs,
and the game is played with tracked physical hockey mallets on a
physical table. The only aspect of the game that is simulated is the
movement of the puck.
AquaGauntlet, created by the MR Systems Lab [16], is based on the
older game RV-Border Guards with similar objectives. The game is
played in an indoor environment using HMDs and toy guns. The aim
is to destroy all of the enemies who appear, and this is achieved by
using the gun in a combination of gestures.
The MIND-WARPING system [27] is an AR gaming system that
allows different users to interact with the system in different ways,
rather than having everybody experience the same actions from
different perspectives. This game involves two players, one who
wears a HMD and colour-segmented gloves, and the other who uses a
workbench with an integrated display. The user wearing the HMD
must then fight off the enemies using a combination of hand gestures
and a kung fu yell.
Touch-Space is the part of the Game-City system [7] that is played in
an indoor environment. The first part of Game-City is essentially just
an AR scavenger hunt in an outdoor environment. Touch-Space is the
more complex part of the gaming system. It is a truly mixed reality
experience with virtual, tangible and augmented reality gaming
experiences throughout several distinct and separate parts.
The first system to explore outdoor AR gaming was ARQuake [29].
This game is based upon the original source code for the id Software
game Quake [12]. Users in this game don a portable computer system
with HMD and toy gun, and walk around outdoors to play the game.
The user’s head is used to control the aim of the weapon, and the
trigger of the toy gun is used to fire. Monsters were added to the
environment, and the user’s goal is to eliminate all the monsters in
the area.
Another system that explores large-scale multiplayer games and
providing different roles for players is Human Pacman [9]. This is an
AR version of the vintage Pacman game, in which ghosts chase
Pacman around a maze as it tries to collect pellets. Much the same
approach is taken in Human Pacman, and the players are divided into
two teams, Ghosts and Pacmen. Pacmen must try to collect all the

cookies in the environment, and the Ghosts must try to devour all of
the Pacmen before they achieve their goal.

3. GAME INTERACTION TECHNIQUES
As described previously, we have developed an AR-RTS game
ARBattleCommander to investigate new user interface technologies.
This game is played in an outdoor augmented reality (AR)
environment, and has techniques implemented to overcome the
physical limitations people encounter when using an AR system over
a large area. This section describes the different problems that have
been considered in the interface and also the decisions made when
developing our techniques.

3.1 Real-Virtual Registration
AR applications cannot use existing VR interaction techniques to
overcome problems with distant interactions because the physical
world must remain aligned with the virtual. If it becomes obvious to
the user that the virtual world has no relation to the physical, the
illusion of a consistent AR world is broken, and the display of the
physical world becomes nothing more than a backdrop to the virtual
environment [31].
This problem can be neatly sidestepped by switching the user’s
viewpoint to an immersive VR view of the game, in a similar manner
to the Magicbook application [5]. In a pure VR view, the user can no
longer see the physical world and is unable to see any discrepancies
between the positions of physical and virtual objects. This shields the
user from any perceptions that registration between the two
environments has been broken. Therefore it is now possible to apply
a number of VR interaction techniques by switching to immersive
VR views while they are in use. When the player is using an
immersive VR view, there needs to be some differences in the way
the game is drawn. When the virtual world is displayed in AR mode,
only the important objects need to be drawn, as the real world is used
as a landscape. If the video was blanked out in an immersive VR
view, the user would have difficulty gaining a reference to where the
ground is, determine distance, or find a horizontal level. Therefore,
while in VR views it is necessary to fabricate at least a ground plane,
and for visual appeal we have implemented a textured ground plane
and surrounding cloud box.

3.2 VR Interaction Techniques
A number of VR techniques could be applied to the game with the
use of AR-VR transitions, such as flying, scaled-world techniques,
and external views.

3.2.1 Flying
In a desktop RTS game, if a battle is taking place at some point far
away from the user’s position, they need merely to make a small
mouse movement to cover thousands of metres of game area in
seconds. An analogous metaphor could be extended to the AR-RTS
game, where the user can make use of a VR flying technique. Using
this, it would be possible to move great distances in very little time,
and the player could theoretically move their viewpoint to any
location within the virtual environment. Such a feature would provide
unlimited and quick movement to any point in the virtual
environment, and because it would be just as easy to use for short
distances, the player could resort to using this form of movement in
preference of the usual AR interactions.

3.2.2 Scaled-World Techniques
To overcome the issues of distant interactions, one possibility would
be to use scaled world techniques. This would essentially give the
player the ability to view the game world in the form of a small-scale

map; in much the same way is done in desktop RTS games. In this
way, the player would be capable of getting an overall strategic view
of the playing field, rather than being entirely confined to localised
tactical decisions. As the player would be capable of seeing the entire
game area at once, and could interact with less effort than in AR
mode, they might rely too heavily on this method of interaction.
Because this would essentially result in the game being played
exactly as if it were a desktop RTS, this would completely defeat the
purpose of playing it on a mobile AR-RTS system.

3.2.3 External Views
Orbital views could be implemented so that the player can specify
any of their units as the centre of rotation. This would provide a good
view of the area surrounding that unit, but would prevent the player
from seeing the entire game world at one time, which may discourage
them from relying too heavily upon this interaction technique.
Unfortunately, providing spatial input while in an orbital view
presents some difficulties. Because the user’s head orientation is used
solely to move the viewpoint around a centre of rotation, it becomes
impossible to look directly at more than one object without needing
to change views again. Therefore input for the selection cursor would
have to be provided through another means, such as hand tracking,
limiting the player’s choice of input modes.
A floating viewpoint may be implemented to provide a similar
perspective to the top-down view used in desktop RTS games. The
player could specify a point on the ground, and then their viewpoint
would appear at a location some distance above the point specified.
Normal rotational control of the viewpoint would remain so the user
could look down upon the game world as though they were flying
above it. This would allow the player to interact with the game as
usual but using a top-down view as is provided by desktop RTS
games, and would make it possible to both get a good overview of
what is happening and also help with making commands over
distances.
The primary disadvantage of such a technique is that it essentially is a
form of flying, and suffers the same problem of providing too much
freedom. This could be easily resolved by creating an artificial
limitation of only allowing the player to specify points that are within
a set distance of units they own.

3.2.4 Comparison of Techniques
While flying and scaled-world techniques would both provide the
required functionality, both allow too great a degree of freedom of
virtual movement. Players might therefore rely too heavily on such
features, which would be to the overall detriment of the system and
make it less realistic. The intrinsic use of physical movement is an
enjoyable part of the augmented reality gaming experience [8], and if
the player does not take advantage of it, there is little benefit in using
an AR platform. If the player were to fall into this pattern of
consistently using the VR interaction technique, there would be no
point to running the game on a mobile system whatsoever.
Enabling orbital views of the virtual environment may work, but as
noted it would be more complicated to provide input in such a
viewing mode, and a technique which closer resembled the AR
interaction method would be desirable for greater consistency.
Providing a floating viewpoint would likely be quite effective, but is
avoided primarily because when in use it results in the player
interacting with the game in exactly the same way as a desktop RTS.
This makes the AR platform pointless if the player resorts to this
technique frequently, which is likely to be the case as it would

provide a better view of the environment than the player’s
perspective and make distant interactions somewhat easier.
Therefore it was decided that the freedom these techniques afford
must be limited in some natural way, while still maintaining enough
functionality to make their use worthwhile. To meet this goal we
have developed another VR technique that we term possession,
which provides a more intuitive and appropriately restrictive method
of viewpoint movement.

3.3 Possession
Possession is the AR technique that we have developed to overcome
the user’s physical limitations while playing an AR-RTS game.
Possession allows the user to select any of the game units that they
control, and take control of the unit’s view of the world. If the player
needs to see what is happening far away, they can select any of their
units that are near the point of interest to get a close-up view. In
effect, it is equivalent to observing the video captured by the remote
user’s eyes over a wireless link, with the added ability to control the
viewpoint as well.

3.3.1 Description
In essence, possession gives the player direct control of the selected
unit’s head, while they control the game as per usual. To use
possession, the player simply positions their selection cursor over any
friendly unit and executes the possession command. The user’s AR
view of the world then changes to a VR view of the same
environment, and their viewpoint will move and rotate to match that
of the selected unit.

Figure 1 - User has control of the viewpoint, but not movement

Once the user is in the VR view, the user will have normal rotational
control of the viewpoint and so will be able to look at the
surroundings of the possessed unit, but their movement throughout
the physical world will have no effect on the movement of the
possessed unit, as illustrated in Figure 1. To move the possessed unit,
or any other of their units, the player can perform selections and give
commands while in the VR view as they do in an AR view. While
possessing a unit the player can give any commands that they usually
would, and this means it is possible to use a possession command on
another unit and jump from one possessed unit’s body to another.
Because the player is only controlling the eyes of the unit, it is also
possible to order the possessed unit to move to another location and
the player’s viewpoint will move with it.

3.3.2 Benefits
Possession has several important benefits over the other VR
interaction techniques that were considered. Perhaps most
importantly, possession limits the freedom the player has over
moving their viewpoint independently of their physical body. If a
standard VR flying technique had been implemented, the player
could easily move their viewpoint to any location in the virtual
environment. This presents problems because the player may rely too

heavily on it, and also because it removes the important fog of war
aspect of RTS games. As the player is limited to using the viewpoints
of their units, they cannot just move their viewpoint to a convenient
location and leave it there. The problems inherent in giving accurate
commands over distances would make it difficult for the user to
simply possess a unit and remain in that view for the entirety of the
game.
A major benefit is the intuitive nature of the possession technique. If
the player could freely fly their viewpoint through the virtual
environment, it would be difficult to understand what they were
looking through, as they would become a disembodied viewpoint
with no logical ties to the virtual and physical environment. Using
possession, it is easy to understand that they are now looking through
the eyes of another entity in the virtual world, or that each unit has a
video camera attached to its head that they can look through.
In the context of an RTS game, possession also preserves the fog of
war mechanism usually employed by these games. The player’s view
is accurately obscured by large game units, structures or terrain, and
with the natural reduction in visibility over distances, the player has a
quite limited field of view. The player can simply possess any of their
units to see exactly what they can see, which results in an extremely
realistic and life-like implementation of fog of war.
Finally, possession provides an almost identical interface for the user
when they are in a VR view. They still have the same rotational
control over their viewpoint and almost all commands can be given in
an identical fashion to when the user is in a normal AR view, with
some small exceptions described later. This is a departure from
orbital views, which would radically change the user’s control of

their viewpoint, or scaled-world techniques, where the user would be
viewing the world as a tiny object that they hold in their hand.

3.3.3 Viewpoint Control
When the player possesses a unit, their viewpoint will change to
match that of the unit. This means that if the player is looking north,
and the unit is looking south, when the player possesses the unit their
viewpoint will be facing south in the virtual world. All movement of
the player’s head is then performed relative to the existing orientation
of the unit’s body. The best metaphor that can be drawn is that the
player takes control of the turret on a tank. They can look left, right,
up and down, but this movement is all relative to the body of the
possessed tank. This means if the possessed unit turns to the left, the
player’s viewpoint will also rotate left by the same amount. Figure 2
and Figure 3 illustrate what happens to the player’s view when they
select a unit to possess. Note that the player did not rotate their head
between these shots, but they are looking in the opposite direction
after possessing the unit (the compass in the top right remains
constant while the horizon shows different heading labels).

3.3.4 Display Differences
An important point to consider is that the viewpoint of the user will
be moved inside of virtual objects when they are possessed. This may
present a problem because when large or complex objects are
possessed the model for the object may obstruct the user’s view. For
this reason, objects that are possessed are not drawn for the user who
possesses them.

3.3.5 Interface
The player only controls the head of a unit, rather than taking control
of the unit itself. This is an important distinction, as taking direct
control of the unit would not accommodate management of groups at
a distance.
Therefore, aside from the ability to share a viewpoint with a friendly
unit, the actual control of the game remains similar to desktop
varieties of previously described RTS games. Units are selected
individually, or can be added or removed from a group selection, and
a cursor appears above all currently selected units to indicate this. All
selected units will execute any commands then given. Commands are
given by simply positioning the cursor over the desired target or
point, and using the menu system to select the appropriate action for
the units to perform.
The only change in the interface that does occur between normal
operation and the possession mode is when the user desires to select
the entity currently being possessed. Because the body of the object
possessed is not visible from the normal view, the user needs some
other way to select it. This is achieved simply by having the player
picking the ground or the sky, which selects the currently possessed
object. The reason this selection criteria is made so broad is because
the player is expected to often want to control the unit they are
currently possessing so they can manoeuvre it around obstacles to get
a clear view of the environment.

3.3.6 Observer Objects
A problem arises with this technique when the user wishes to quickly
reach an area not occupied by any friendly units. Apart from wishing
to spy on the actions of an enemy, a user may also wish to move their
units to precise locations some distance away, which are difficult to
do at long range from ground level due to the small area of the
ground displayed at a distance with a perspective projection. When
using applications that do not have any existing objects in the
environment that are suitable for possession, the previous techniques
cannot be used in their described form.

Figure 2 - Player’s view prior to a possession command

Figure 3 - Player’s view immediately after a possession command

These problems using the possession technique can be overcome
using objects that we term observer objects. Observer objects are
virtual objects created specifically to make the possession technique
easier and more efficient to use. Observer objects can be thought of
as free-floating cameras.
There are two ways in which these objects could be implemented;
either as objects under command of the user, or as intelligent
autonomous agents. Having user-directed observers has the
advantage that the user can instruct them exactly where to go and
what to do, but managing the observers is another task that may
overwhelm an already busy user. Alternatively, intelligent agents
may be extremely efficient and require no user intervention at all, but
this depends upon how intelligent they actually are, and in
complicated applications it may be difficult to create observers that
always know where they are needed.
Exactly how observer objects are implemented will always be
dependant upon the application in question. In the game described in
this paper, we have implemented observer objects as a combination
of both the user-directed and intelligent types described above. The
observers are instantiated as helicopters that take orders from the
player who owns them as a first priority. When the user has not given
them a command they move close to any battles that are taking place
in the game and circle them slowly, facing the battle at all times.
Figure 4 shows an observer platform in the sky observing a tank in
the environment. This way the player can always see where
something of interest is happening from the locations of their
helicopter units, and can see exactly what it is by possessing the
helicopter.
To preserve the fog of war aspect of the game, the observer is
implemented as a standard game unit in this game. This prevents the
player from permanently leaving it in unfriendly regions as a spy
because the enemy can destroy it like any other object, costing the
player a valuable and possibly irreplaceable asset.

4. AR BATTLE COMMANDER
This section provides an overview of ARBattleCommander, covering
the features the game offers, the interface the players use and the
platform on which it operates.

4.1 Game Overview
ARBattleCommander is structured in a similar style to a traditional
desktop RTS game. The player starts with an army of military units
to control, and they must destroy all of their opposition’s forces. The
player achieves this by giving commands to their units, such as move
or attack..

4.1.1 Command Interface
To give a command, the player first selects all the units they wish to
carry out the command, by aiming their cursor at them and using the
select command from the menu. The cursor appears as a cross in the
centre of the user’s HMD, and is moved with the user’s head or hand
movement. All units that have been selected have spinning diamonds
appearing above them. The player can then issue commands by
aiming their cursor at the target and giving the appropriate command
(move, attack or stop).

4.1.2 Unit Descriptions
There are currently five distinct types of military units implemented
in the game, and these are as follows: 1) Standard Infantry is slow
moving, low health, ineffective weapons, but are available in great
numbers. 2) Rocket Infantry is very slow moving, very low health,
but with better weapons than Standard Infantry. 3) Tank is excellent
armour, high top speed, reasonable acceleration, a strong weapon, but
very few available. 4) Artillery is an extremely effective weapon,
reasonable top speed, average armour, but slow acceleration and
relatively few available. 5) Helicopter is excellent speed, more
difficult to hit than ground-based units, but has no weapons and there
is only one per player, with a degree of autonomy and moves to
watch conflicts as they occur.

4.1.3 Features
The most significant feature that this AR-RTS game provides over
traditional RTS games is the unique game perspective. Players in
traditional RTS games view the world from a top-down or isometric
viewpoint, far above ground. This means that objects often cannot be
drawn to scale, and it is not uncommon for large vehicles to be
displayed as only slightly larger than individual people. This is
particularly evident in games that incorporate large sea craft, like the
popular Command and Conquer - Red Alert [33] game.
Because every object in our AR-based game is drawn from a 3D
model and the player views them against an outdoor physical
environment, it is natural to draw everything to real-world scale. This
means that if we were to implement large sea-craft in this game, they
could easily be displayed at several hundred metres in length, and at a
distance would not necessarily dominate the player’s view.
As previously mentioned, an important aspect of traditional RTS
games is the fog of war. The AR-RTS game is played from a first-
person perspective, either in the player’s physical body or the body of
one of their units, and so everything has a real line of sight in the
virtual environment. By possessing their units, it is possible for the
player to see everything that is in the line of sight of one of their
units, and so this provides an extremely realistic fog of war effect. It
includes not just occlusion by the environment, but also by other
game objects. If something cannot be seen from the player’s physical
location or by any one of their units, then it cannot be viewed, just
like in the physical world.

4.2 Interface
ARBattleCommander retains the omnipresent disembodied
interaction metaphor provided by traditional RTS games. To this
purpose, the user will still have a representation in the virtual world
as a point of reference while they are in possession mode, but this
avatar is removed from all direct game interactions. As the player is
representing the commander of an army, the only way in which the
player can interact with the world is by using the command interface
to direct the actions of their game pieces.
For command input that is normally provided by a mouse button or
keyboard in desktop RTS games, we have provided a hand-held

Figure 4 - An autonomous observer object examining a point of

interest to the user

push-button device. A pair of paddles that provide similar
functionality as the previous Tinmith pinch gloves were created,
shown in the screen image in Figure 5. Each paddle has five buttons,
one under each finger or thumb, so the presentation and structure of
the menus remains valid and meaningful. Straps are wrapped around
the user’s hands so the player can release their grasp of the paddles
without dropping them. We felt the paddles would be a less
intimidating way for novice users to control the user interface
compared to the previously used Tinmith gloves [20].
To provide spatial input for selecting points and objects, there are two
simple methods available through our existing Tinmith system. The
first is to use a head cursor, which is simply a reticle drawn in the
centre of the user’s display that the player aims by turning their head
directly towards their target. The second is to use a hand tracker,
which is implemented using a fiducial marker attached to the paddles
and tracked by the camera that is used for the live AR video display.
Using the hand to point at a target seems like a more intuitive way to
provide this input, although since the vision tracker is not always
accurate or robust it is sometimes preferable to use the head cursor.

4.3 Game Server
The game server handles a single instance of a game in progress. The
server is responsible for all game logic and transmitting the state of
the game to each client, while the clients that connect to it handle
player input and the display of data. Once a server is started, multiple
clients can connect to it at any time. Upon their connection, the server
allocates each client an army of units that are placed in the virtual
environment, and the clients can then send commands for their units
to the server.
The only information the client programs need to provide to the
server is input events from the user, such as commands selected from
the menu and the current cursor positions in 3D coordinates. The
clients are aware of the current state of the game world via messages
being constantly transmitted by the server.

4.4 The Tinmith System
The Tinmith system was developed as a software platform for
developing mobile outdoor AR applications [21]. Our existing
Tinmith software was previously demonstrated interacting with DIS
protocol based simulation software [19]. The DIS protocol is an IEEE
standard [1] and supports a wide range of complex message formats.
Rather than implement our game server using DIS protocol, we used
a much simpler format to make the implementation easier and allow
messages that are specific to our game. The existing DIS interface in
Tinmith was modified to also support our new game protocol.
Each object in the game transmits a message at a regular interval, and
this is broadcast to all the client programs. These are known as status
message, and one of these describes the current position and state of
one object in the game. Player input is provided through messages
sent via the TCP connection with the server, known as command
messages. When a player gives a command, all the information
required by the game is stored in a packet and sent to the server.
Command messages are designed to provide details from the
interface to the game, describing any commands the player has given.
They are also used by the server to transmit kill messages to the
interface when an object no longer exists, and by a client program to
signal when it is ready to join the game. It is important that these
messages are reliably delivered so they are transmitted across a TCP
channel to ensure none are lost. The number of command messages
are proportional to the number of players. Status messages are
designed to give all the essential details such as position and

orientation of all game objects at any point in time. The server uses
these messages to share with clients the current state of the game.
These messages may be transmitted over UDP since lost packets will
be quickly updated with newer messages. UDP is much more
efficient than TCP in environments where there are large numbers of
entities, and also support broadcasting over local networks.
Each mobile AR system runs the Tinmith software, which acts as a
client program for the game server. Tinmith performs the display of
all game-related information to the user through a video see-through
HMD, processing input from the user through its menu system and
sensor data, and tracking the movement of the user through the
virtual environment. The game server manages the overall simulation
of the game and is able to support multiple clients connected to it.
Multiple mobile AR systems running Tinmith clients can connect to
the game server to support multi-player games. Furthermore, we have
written a 2D desktop based interface so that indoor users can also
play the game against outdoor AR users.
The Tinmith client software runs on our latest Tinmith 2004
backpack computer [22]. The current implementation contains a Dell
Inspiron 8100 laptop with Pentium-III 1.2Ghz and NVidia
GeForce2Go, Pyro Firefly 1394 camera, IO-Glasses SVGA display,
InterSense InertiaCube2, Trimble Ag132 GPS, custom Tinmith
gloves or paddles, and NiMH batteries with 2 hours run time.

5. LESSONS LEARNED
This section provides an overview of the knowledge we gained from
our iterative design process. Three major sets of tests were
conducted. Each of the tests described in detail below was conducted
as an informal study on our Tinmith backpack in a typical outdoor
environment on our university campus.

5.1 Initial Testing
Before testing outdoors, a number of tests were performed indoors to
verify the operation of the game.

5.1.1 Client-Server Communications
In the testing of the communication systems, an important problem
was found with relation to the desired game speed. Without wanting
to implement client-side interpolation methods as is done in the DIS
protocol [1] which only updates every few seconds, a high frequency
of status messages were to be generated for each object to make its
movements appear smooth to the user. When a large number of
entities were in the game, a large quantity of traffic was generated
that could not be handled by the client programs. Many status
messages sent were found to be redundant because most entities were
sitting still or moving very slowly; status messages were adjusted to
only be emitted when the state of the entity had changed. A timeout is
used to ensure that objects are refreshed every few seconds so that
newly connected clients will receive information about all objects in
the game.

5.1.2 Information Display
A background model for the game (consisting of a hilly landscape
and horizon) was initially supplied to improve visual contrast with
the game objects in AR mode, and also to provide some scenery for
the immersive VR views. When the game was viewed in its normal
AR mode, the background model was found to block too much of the
player’s view of the physical world. Several simplified landscapes
were tested, but the background models were eventually abandoned
altogether. In AR mode, only the important game objects are drawn,
and Tinmith draws a ground plane and cloud box solely for the
immersive VR views. The physical environment is captured with a
video camera to provide the rest of the needed detail for the game.

5.2 First Set of Outdoor Tests
This set of testing was preformed on the system with both a fully
functional user interface and game server. Although the possession
technique was implemented, there were no observer objects in the
game, and possession relied solely upon the player’s available ground
based units. Some simple game play was evaluated.

5.2.1 Selection
Accurate selection of objects less than one metre in width could be
performed consistently from 30 metres away. However, because of
the relatively dense groups that objects were initially created in,
accurate selections among objects in a group were extremely
difficult. Possession was used to jump to the viewpoints of various
entities, and then used to navigate through objects in a crowd in a
number of steps, which worked around the selection problem.
Use of possession for this purpose proved to be disorienting for a
couple of reasons however. Firstly, because the viewpoint
immediately jumps from one object to the next, and objects are not
drawn when they are possessed, it is sometimes confusing as to
which unit is now being possessed. Secondly, the possession requires
the player’s viewpoint to rotate to match that of the object. We
believe that using animation techniques such as those described by
Thomas and Caulder [30] to interpolate between viewpoints will help
the user to better understand their possession operations.

5.2.2 Movement
Movement proved to be difficult over long distances. When
attempting to command a unit to move more than approximately 50
metres away, accuracy was reduced to about 5 metres. This was due
to the small fraction of the ground surface visible from such a
distance away caused by depth perspective. Possession was only able
to resolve this issue in the instances when there was another friendly
unit nearer to the target location.

5.2.3 Situational Awareness
When there were battles taking place any distance from the player, it
sometimes went unnoticed. Because the game does not currently
implement any audio cues, the player must rely on their sense of sight
to make them aware of what is happening. In some cases even close
scrutiny of the battlefield would not have helped, because large
groups of units were obstructing the player’s view of the conflict.

5.2.4 Input
Throughout this test, both head- and hand-based input cursors were
utilised, and use of the hand tracker can be seen in Figure 5. The head
cursor was generally preferred, because the hand tracker gave slightly
more jittery input than the head tracker, making distant targets more
difficult to select. The vision tracking of the hand-based input was
adversely affected by the varying light conditions, and we are
working on developing new ways of improving this tracking
outdoors.

5.2.5 Test Conclusions
In order to resolve the problems of selection in a crowd, two options
have been identified. The first is to introduce a smooth AR/VR
transition when the player possesses an object, similar to the
transition used in the Magicbook [5]. The second solution would be
to enable a higher virtual viewpoint for the player in some way, thus
making it possible to see over the top of many of the units in the
group. The second option is preferable, because possession was only
disorienting in crowded groups, due to selecting an incorrect unit.
Introducing a transition in these circumstances would make it
obvious which unit was selected, but would still require the player to

reorient themselves after every possession command. The transition
would also add a significant delay to every viewpoint change.
To solve the problem of accuracy over distance due to ground
attenuation, we provide the player with the means of virtually
elevating their viewpoint significantly. The player’s situational
awareness is improved by allowing the player to elevate their
viewpoint, and providing an overview of the state of the game. The
orbital view [13] technique was investigated first. This provided a
good overall view of the playing area, but made it difficult to
manipulate objects since the cursors are not available. A second
solution was to introduce helicopters for the player to possess. For
game play reasons, it was decided that these units must be dedicated
to moving and observing activities only, so that the player was not
constantly occupying them by involving them in combat. By adding a
level of intelligence to these, it would also be possible to further
improve the player’s situational awareness by having the units
automatically move to look at important game events.

5.3 Second Set of Outdoor Tests
This set of tests investigated the new situational awareness
techniques involving observer objects (helicopters) with a small
degree of autonomy.

5.3.1 Selection and Movement
With the introduction of the helicopters, selections among groups of
objects became easier. When the player’s helicopter was nearby and
sitting idle, it provided a very useful platform to use when making
selections and a good general bird’s eye view of the game area. When
a helicopter was actively watching a game piece, and therefore
circling around the game piece, this constant movement made
accurate selections among groups difficult. Accurate selections were
still possible, but it took several seconds to adjust and compensate for
the constant movement of the helicopter. In the cases where
selections amongst groups had to be made but the helicopter was
elsewhere, it was a simple matter to order the helicopter to return so
that it could be used as a viewing platform. Because of the simple
intelligence that had been implemented, the helicopter would only
stay in one area if the player ordered it to focus on a specific point.
This presented a problem, because although it could still be utilised
as a viewing platform, selections took longer because of the constant
movement between different events as they happened.
Movement over distances was also far easier when a helicopter was
available. Because the helicopters hover at 20 metres above ground
they have a far better view of the ground below, so units could be
moved accurately over great distances. In the situations where the
helicopter was moving, as with selection, accuracy was still possible,

Figure 5 - Using the hand-based input cursor

but it took some time to adjust to the movement of the viewpoint.
This adjustment can be seen as another challenge for players of the
game to make the game more difficult yet enjoyable.

5.3.2 Situational Awareness
The implementation of semi-autonomous helicopters proved to be a
valuable decision regarding the player’s awareness. Instead of
constantly looking around to see if any important events were
happening, it was a simple matter to locate the position of the
helicopter in the sky. If a conflict was happening, the helicopter
would move over to it and observe it from close up. The constant
movement of the helicopter when observing these events also helped
to draw attention to it and made it easier to locate. If the helicopter is
idle then the user knows there is nothing of interest occurring.

5.3.3 AR-VR Balance
Particular attention was paid to the length of time the user spent using
AR and VR views. As noted previously, there is no reason to have an
outdoor AR-RTS game that is played entirely from a VR perspective.
During the testing, we found approximately 90% of the user’s time
was spent in the AR views.
A contributing factor was the environment the system was tested in.
Extensive movement was not possible and the location was a grassy
area approximately 40 metres in length near a small road, preventing
the user from walking too far. Furthermore, if the user wants to walk
they must switch to the AR view so they can safely navigate in the
physical environment. The user walking is a major factor in ensuring
the user is operating in AR mode rather than VR mode, which was an
initial concern. Although the VR views when possessing a helicopter
provided accurate input over long distances, it was easier to walk to
units nearby when performing selections from groups.
Although possession proved to be useful for performing specific
tasks that would otherwise be impossible, overall it reduced
awareness of game events as they happened. This could largely be
due to the fact that all game units aside from the helicopter had lower
viewpoints than the user thus making other objects obstruct the user’s
view more. Furthermore, although the helicopter provided a good
overall view of the game area, its semi-intelligent nature made it
move around a lot, which made extended periods in its viewpoint
slightly irritating. This could be improved by adding more intelligent
logic to the helicopter.

5.3.4 Test Conclusions
Game play was significantly easier in this test, due to the introduction
of the helicopter units. These made accurate movement over
distances possible, helped when making selections from groups, and
also increased situational awareness to some degree.
The intelligence present in the helicopters proved to be quite useful
overall. It made it possible for the player to immediately see when a
battle was taking place, and to immediately get a good view of it by
possessing the helicopter. This autonomous behaviour did make the
helicopter irritating to use over any extended period of time, as it
would constantly move from one area to another when multiple
battles were taking place. On the other hand, this provided more
incentive to use the AR view for the majority of the time, and did not
significantly affect the use of the helicopter for short periods of time.
A useful feature that might be implemented for helicopters is an extra
command instructing them to hover above the player’s head for a
length of time. The player could then possess the helicopter to easily
elevate their view straight up, and not have to worry about the
helicopter immediately moving away to observe events elsewhere.
Situational awareness still seemed to be lacking overall, as it was

possible to lose sight of the helicopter and then not be aware of when
battles were taking place. This could be solved easily enough through
the introduction of a prompting system that gives messages when a
player’s units are involved in a conflict. Many desktop RTS games
use sound cues to help inform the user about problems when they are
otherwise concentrating on other tasks. A more effective and intuitive
solution would probably require the implementation of spatial sound.
That would enable the player to hear exactly what was happening at
any time, and also the direction of the activity.

6. CONCLUSION
Augmented Reality provides an interesting and exciting environment
for future applications. Entertainment applications are likely to play a
large part in the development of this field, and consumers will
undoubtedly want a diverse range of game styles. Unfortunately, due
to the requirements of effective AR, games played in such an
environment require that users’ movement in the virtual world be tied
to their movement in the physical world. This presents a problem
when trying to create games that give players the freedom to escape
the limitations of their own body.
A real-time strategy game is a popular genre that has not yet been
implemented in outdoor AR environments, and requires an
interaction metaphor fundamentally different to other AR games
currently in existence. RTS games require that a single player can
effectively control an entire army, and when this army is represented
in full scale in the real world, it becomes obvious that the player must
be able to overcome their physical limitations to achieve their goal.
For these reasons, an RTS game was selected as a currently
unaddressed research problem. We developed an AR-RTS game,
ARBattleCommander, to be played outdoors on the mobile Tinmith
AR backpack to experiment with interface techniques to overcome
these limitations.
A simple way to temporarily de-couple the physical and virtual
worlds was identified by using AR-VR transitions; changing the
user’s display of the AR environment to a purely VR view for a
period of time. This enables the introduction of any of the extensively
researched VR interaction techniques without making the user aware
of any registration discrepancies between the physical and virtual
worlds.
We also introduced a new interaction technique, possession.
Possession provides an easily understandable means of moving the
player’s viewpoint, by allowing a player to view the world through
the eyes of their units. While it gives them control over the viewpoint
of the unit, it otherwise has the player interacting with the game in
the usual way. They are still required to give commands to move
their units around, and have no form of direct control over the unit
they are possessing. Possession allows the player to instantly move
their viewpoint to any locations where they have units, and still
interact with their forces in the same way, allowing easy
manipulations of large groups of units at any distance. The concept of
observer objects was also introduced, which are objects designed to
be used primarily as cameras for the user to posses and get improved
external viewpoints otherwise not possible.
Informal tests of the game indicated that using the possession
technique allowed for accurate input over long distances without
requiring the player to move in the physical world. Furthermore,
because the observer objects were implemented with a degree of
autonomy and the other units were unable to get as good a view as
the player in the physical world, there was no incentive to rely too
heavily on the technique and thus negate the benefits of running the
game on an AR platform.

7. Acknowledgements
The authors would like to thank Bruce Thomas for his help in the
preparation of this manuscript. Thanks also go to all the students in
the Wearable Computer Lab who have helped with this project in
various ways.

8. References
[1] Institute of Electrical and Electronics Engineers. Protocols for

Distributed Interactive Simulation. In ANSI/IEEE Standard
1278-1993, 1993.

[2] Activision. Battlezone. http://www.activision.com
[3] Azuma, R. A Survey of Augmented Reality. Presence:

Teleoperators and Virtual Environments, Vol. 6, No. 4, pp 355-
387, 1997.

[4] Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., and
MacIntyre, B. Recent advances in augmented reality. IEEE
Computer Graphics and Applications, Vol. 21, No. 6, pp 34-47,
2001.

[5] Billinghurst, M., Kato, H., and Poupyrev, I. The MagicBook -
moving seamlessly between reality and virtuality. IEEE
Computer Graphics and Applications, Vol. 21, No. 3, 2001.

[6] Butterworth, J., Davidson, A., Hench, S., and Olano, T. M.
3DM: A Three Dimensional Modeler Using a Head Mounted
Display. In Symposium on Interactive 3D Graphics, pp 135-
138, Cambridge, Ma, Mar 1992.

[7] Cheok, A. D., Wan, F. S., Yang, X., Weihua, W., Huang, L. M.,
Billinghurst, M., and Kato, H. Game-City: a ubiquitous large
area multi-interface mixed reality game space for wearable
computers. In Proceedings Sixth International Symposium on
Wearable Computers, Oct 2002, Seattle, WA, 2002.

[8] Cheok, A. D., Yang, X., Ying, Z. Z., Billinghurst, M., and Kato,
H. Touch-Space: mixed reality game space based on ubiquitous,
tangible, and social computing. Personal and Ubiquitous
Computing, Vol. 6, No. 5-6, pp 430-42, 2002.

[9] Cheok, A. D., Fong, S. W., Goh, K. H., Yang, X., Liu, W.,
Farzbiz, F., and Li, Y. Human Pacman: A Mobile Entertainment
System with Ubiquitous Computing and Tangible Interaction
over a wide outdoor area. Personal and Ubiquitous Computing,
Vol. 8, No. 2, pp 71-81, 2004.

[10] Clark, J. H. Designing Surfaces in 3-D. Communications of the
ACM, Vol. 19, No. 8, pp 454-460, 1976.

[11] Forsberg, A., Herndon, K. P., and Zeleznik, R. Aperture Based
Selection for Immersive Virtual Environments. In 9th Annual
Symposium on User Interface Software and Technology, pp 95-
96, Seattle, Wa, Nov 1996.

[12] id Software. Quake. http://www.idsoftware.com
[13] Koller, D. R., Mine, M. R., and Hudson, S. E. Head-Tracked

Orbital Viewing: An Interaction Technique for Immersive
Virtual Environments. 1996.

[14] Liang, J. and Green, M. Geometric Modelling Using Six
Degrees of Freedom Input Devices. In 3rd Int'l Conference on
CAD and Computer Graphics, Beijing, China, Aug 1993.

[15] Mine, M., Brooks, F. P., and Sequin, C. H. Moving Objects In
Space: Exploiting Proprioception In Virtual-Environment
Interaction. In Int'l Conference on Computer Graphics and
Interactive Techniques, pp 19-26, Los Angeles, Ca, Aug 1997.

[16] Mixed Reality Systems Laboratory Inc. AquaGauntlet.
http://www.mr-system.com/project/aquagauntlet/

[17] Multigen. SmartScene. http://www.multigen.com
[18] Ohshima, T., Satoh, K., Yamamoto, H., and Tamura, H.

AR2Hockey: a case study of collaborative augmented reality.
In Proceedings. IEEE 1998 Virtual Reality Annual International
Symposium, Mar 1998, pp 268-75, Atlanta, GA, USA, 1998.

[19] Piekarski, W., Gunther, B., and Thomas, B. Integrating Virtual
and Augmented Realities in an Outdoor Application. In 2nd
Int'l Workshop on Augmented Reality, San Francisco, Ca, Oct
1999.

[20] Piekarski, W. and Thomas, B. H. Tinmith-Metro: New Outdoor
Techniques for Creating City Models with an Augmented
Reality Wearable Computer. In 5th Int'l Symposium on
Wearable Computers, pp 31-38, Zurich, Switzerland, Oct 2001.

[21] Piekarski, W. and Thomas, B. H. An Object-Oriented Software
Architecture for 3D Mixed Reality Applications. In 2nd Int'l
Symposium on Mixed and Augmented Reality, Tokyo, Japan,
Oct 2003.

[22] Piekarski, W., Smith, R., and Thomas, B. H. Designing
Backpacks for High Fidelity Mobile Outdoor Augmented
Reality. In 3rd Int'l Symposium on Mixed and Augmented
Reality, Arlington, Va, Oct 2004.

[23] Piekarski, W. and Thomas, B. H. Augmented Reality Working
Planes: A Foundation for Action and Construction at a Distance.
In 3rd Int'l Symposium on Mixed and Augmented Reality,
Arlington, Va, Oct 2004.

[24] Pierce, J. S., Forsberg, A., Conway, M. J., Hong, S., Zeleznik,
R., and Mine, M. R. Image Plane Interaction Techniques in 3D
Immersive Environments. In Symposium on Interactive 3D
Graphics, pp 39-43, Providence, RI, Apr 1997.

[25] Robinett, W. and Holloway, R. Implementation of flying,
scaling and grabbing in virtual worlds. In Proceedings of the
1992 symposium on Interactive 3D graphics, pp 189-192,
Cambridge, Massachusetts, United States,

[26] Sachs, E., Roberts, A., and Stoops, D. 3-Draw: A Tool For
Designing 3D Shapes. IEEE Computer Graphics and
Applications, Vol. 11, No. 6, pp 18-24, 1991.

[27] Starner, T., Leibe, B., Singletary, B., and Pair, J. MIND-
WARPING: towards creating a compelling collaborative
augmented reality game. In Proceedings of IUI 2000:
International Conference on Intelligent User Interfaces, 9-12
Jan. 2000, pp 256-9, New Orleans, LA, USA, 2000.

[28] Stoakley, R., Conway, M. J., and Pausch, R. Virtual Reality on
a WIM: Interactive Worlds in Miniature. In Conference on
Human Factors in Computing Systems, Denver, Co, May 1995.

[29] Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P.,
Morris, M., and Piekarski, W. ARQuake: an outdoor/indoor
augmented reality first person application. In Proceedings of
Fourth International Symposium on Wearable Computers -
ISWC, 16-17 Oct. 2000, pp 139-46, Atlanta, GA, USA, 2000//.

[30] Thomas, B. H. and Caulder, P. R. Applying Cartoon Animation
Techniques To Graphics User Interfaces. ACM Transactions
on Computer-Human Interaction, Vol. 8, No. 3, 2001.

[31] Thomas, B. H. and Piekarski, W. Outdoor Virtual Reality. In
Int'l Symposium on Information and Communication
Technologies, pp 226-231, Dublin, Ireland, Sep 2003.

[32] Westwood Studios. Dune 2. http://www.westwoodstudios.com
[33] Westwood Studios. Command & Conquer: Red Alert.

http://www.westwoodstudios.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

