
Using ARToolKit for 3D Hand Position Tracking in Mobile Outdoor Environments

Wayne Piekarski and Bruce H. Thomas
Wearable Computer Laboratory

School of Computer and Information Science
University of South Australia

Mawson Lakes, SA, 5095, Australia
{wayne, thomas}@cs.unisa.edu.au

Abstract
This paper describes how we have used the ARToolKit to

perform three degree of freedom tracking of the hands, in
world coordinates, which is used to interact with a mobile
outdoor augmented reality computer. Since ARToolKit gener-
ates matrices in camera coordinates, if errors occur during
the calibration process, it is difficult to extract out real world
coordinates. We discuss the problem of making ARToolKit
generate world coordinates, and the solutions we developed
to meet the requirements for our tracking system.

1 Introduction
We have been performing research into mobile outdoor

augmented reality, with examples such as the Tinmith-Metro
application [2] shown in Figure 1. In these applications, we
have been developing new user interaction techniques, as
traditional desktop devices such as mice and keyboards do not
work well in mobile outdoor environments. In order to inter-
act with the complex modelling features of Tinmith-Metro,
we have developed a glove which is the primary input device
for the system. Unfortunately, traditional tracking technology,
such as magnetic, ultrasonic, and acoustic systems, are de-
signed for indoor use and are not suitable for placement onto a
mobile outdoor backpack. To solve these problems, we have
developed a cheap and low cost 3 DOF (degrees of freedom)
hand tracker based on the ARToolKit libraries, allowing us to
use a video camera mounted on the head to track the motion
of the hands of the user as real world X, Y, Z values.

The ARToolKit libraries [1] were developed to support the
tracking of simple fiducial markers, allowing applications to
appear to place 3D objects onto these markers, and then
viewed on a display device – an example is the ARToolKit
simpleTest application. It should be noted that while the AR-
ToolKit generates 6DOF matrices for each fiducial marker
that are sent to OpenGL, these matrices are relative to a spe-
cial distorted camera frustum model, and not usually in real
world coordinates. If the calibration model for the camera is
not perfect (the ARToolKit calibration process does not al-
ways generate good results) then extra errors are introduced
into the results and it is unusable for tracking.

This paper discusses problems with calibration and getting
accurate results for use as a tracker, and then discusses the
solutions that we used to make the tracker work to our re-
quirements.

2 Gloves and video cameras
We use a set of custom designed gloves to control the sys-

tem, using metallic contacts on the fingertips, thumb, and
palm to detect finger presses. We created two ARToolKit
fiducial markers, each 2cm x 2cm in diameter, and glued them
to the thumbs of the glove (see Figure 1). We placed the
markers on the thumb because this allows us to perform finger
presses without moving the position of the marker. The size of
the markers is the most appropriate size given that the position
tracking is always within arms reach of the head mounted
camera.

We use a PGR Firefly camera mounted on the user’s head
to capture the video and then pass it to ARToolKit. The cam-
era has good dynamic range and can capture the fiducial
markers in direct sunlight, at sunset, and in complete darkness
with an extra light on the camera. Since the tracker operates in
real world coordinates, it is possible to mount the camera
anywhere appropriate on the body and transform the coordi-
nates using a scene graph. The camera used for tracking does
not have to be the same as that used for the AR overlay, and
allows users watching from external VR views to see the loca-
tions of the cursors floating in front of the user’s avatar.

Figure 1 – Tinmith immersive augmented reality display, with gloves and 2 cm²
fiducial markers, and 3D overlaid red(X) / green(Y) / blue(Z) cursor axes

For more information, as well as videos of the system in use outdoors, readers
are invited to visit our web site at http://www.tinmith.net

Tinmith
In ART02, 1st International Augmented Reality Toolkit WorkshopSeptember 29, 2002 - Darmstadt, Germany - Copyright (C) 2002 IEEEPlease visit http://www.tinmith.net for more information

3 Camera calibration
In applications which completely use the ARToolKit (such

as simpleTest), the video is first captured by libARvideo. Next,
recognition of fiducial markers and calculation of camera-
space transformations is performed in libAR, which is then
used to render the final scene using the camera calibration
frustum in libARgsub.

3.1 ARToolKit internal operation
When a pattern is recognised, a matrix transformation is re-

turned from arGetTransMat(), which defines the marker’s
position and orientation (6DOF) relative to the camera, in the
camera’s calibrated coordinate system. The camera calibration
data is used by this function to modify the results to compen-
sate for the camera’s unique properties. Due to distortions in
the camera, and errors in the calibration process, the coordi-
nate system is not the typical orthogonal coordinate system
normally used in 3D graphics.

If this camera-space matrix is used to draw an object with
libARgsub, the view frustum used in OpenGL will be the
same as that of the camera model, and so the image will ap-
pear to be rendered at the correct location. An interesting side
effect of these transformations is that no matter how poor the
camera calibration is, the 3D object overlaid on the fiducial
marker will always be correct since the incorrect calibration
model used in arGetTransMat() is reversed when drawing
using the camera as the view frustum in libARgsub.

When we tried to take the matrix calculated in arGet-
TransMat() and put it into a scene graph, errors occurred in
the results for two reasons. The first was that the camera cali-
bration was not being used to render the display and compen-
sate for any camera distortions. Secondly, because the calibra-
tion was not good enough and did not model the camera accu-
rately, extra errors were introduced.

After calibration of a camera, ARToolKit generates infor-
mation for the camera, such as Figure 3. The values which
define the coordinate system of the camera (and we also
found introduces the most errors) were the X and Y values for
the centre pixel of the camera. In the default supplied file, the
Y axis is 48 pixels from the centre of the camera, and under
testing we found most cameras had centre’s that were rea-
sonably in the middle. This was an error introduced during the
calibration process which we are correcting in this paper.

3.2 Calibration solution
We take the matrix which is generated in the ARToolKit

calibration procedure (such as Figure 3) and read it in from a
binary file, with the layout shown in Figure 2. We only want
to adjust the centre point and leave the focal point and scale
values untouched because they are reasonably correct and less
noticeable. Figure 4 shows the calculations needed to create
an orthogonal camera model with the centre of the image be-
ing the axis of the camera (see Figure 5).

This technique is only useful for correcting errors caused
by the ARToolKit calibration on cameras which have the

centre of the image at approximately the axis of the camera. In
distorted cameras, this technique could produce results which
are worse than the uncorrected version, and so should be used
with care and the results carefully monitored to ensure that it
is being used in an appropriate fashion.

3.3 Conclusion
When used for 3D position tracking the results of the hand

tracker are quite good and the registration is within the area of
the target. However, detecting 3D rotation is more error prone
since large changes in orientation only give small changes in
perspective on the image, resulting in very jittery output in the
order of 20-30 degrees. As a result, we currently only use this
tracker mainly for position tracking, using it as a 3D cursor on
the HMD. By combining two cursors it is possible to derive a
high quality rotation using their relative positions.

Using ARToolKit as a general purpose tracker with some
adjustments has allowed us to integrate hand tracking into our
outdoor modelling applications. This opens up a number of
new areas of applications for ARToolKit.

4 References
[1] Kato, H. and Billinghurst, M. Marker Tracking and HMD Cali-

bration for a Video-based Augmented Reality Conferencing Sys-
tem. In 2nd Int'l Workshop on Augmented Reality, pp 85-94, San
Francisco, Ca, Oct 1999.

[2] Piekarski, W. and Thomas, B. Tinmith-Metro: New Outdoor
Techniques for Creating City Models with an Augmented Reality
Wearable Computer. In 5th Int'l Symposium on Wearable Com-
puters, pp 31-38, Zurich, Switzerland, Oct 2001.

/* (a) Actual struct */
typedef struct {
 int xsize, ysize;
 double mat[3][4];
 double dist_factor[4];
} ARParam;

/* (b) Components explained */
typedef struct {
 int cam_width, cam_height;
 double matrix [3][4];
 double centre_x, centre_y;
 double focal, size;
} ARParam;

Figure 2 – (a) Actual C code definition for ARParam camera distortion model
(b) Cleaned up C structure which has easier to understand components

camera = (640, 480) | 780.54 0.54 304.64 0.00 |
centre = (317.5, 192.0) | 0.00 762.30 208.68 0.00 |
focal = 26.300000 | 0.00 0.00 1.00 0.00 |
size = 1.009989 | 0.00 0.00 0.00 1.00 |

Figure 3 – ARToolKit default camera_para.dat file, with error x=2.5, y=48.0

centre_x = cam_width / 2.0;
centre_y = cam_height / 2.0;
matrix[0][2] = cam_width / 2.0;
matrix[1][2] = cam_height / 2.0;

Figure 4 – Pseudocode to make axes of input camera model orthogonal, forcing it

to match those of a perfectly symmetrical camera model

camera = (640, 480) | 780.54 0.54 320.00 0.00 |
centre = (320.0, 240.0) | 0.00 762.30 240.00 0.00 |
focal = 26.300000 | 0.00 0.00 1.00 0.00 |
size = 1.009989 | 0.00 0.00 0.00 1.00 |

Figure 5 – Corrected version of camera_para.dat, with clean orthogonal axes,
suitable for use as a tracker without using the camera model as the frustum

