
The Tinmith System - Demonstrating New Techniques 

for Mobile Augmented Reality Modelling 

Wayne Piekarski and Bruce H. Thomas 

Wearable Computer Laboratory 

School of Computer and Information Science 

University of South Australia 

Mawson Lakes, SA, 5095, Australia 

{wayne, thomas}@cs.unisa.edu.au 

Abstract 

This paper presents user interface technology, using a glove 

based menuing system and 3D interaction techniques. It is 

designed to support applications that allow users to construct 

simple models of outdoor structures. The construction of models 

is performed using various 3D virtual reality interaction 

techniques, as well as using real time constructive solid 

geometry, to allow users to build up shapes with no prior 

knowledge of the environment. Previous work in virtual 

environments has tended to focus mostly on selection and 

manipulation, but not starting from an empty world. We 

demonstrate our user interface with the Tinmith-Metro 

application, designed to capture in city models and street 

furniture. 

Keywords: wearable computers, augmented reality, user 

interfaces, constructive solid geometry, 3D modelling. 

1 Introduction 

We have been investigating immersive 3D outdoor 

Augmented Reality (AR) architectures and applications. 

Our previous investigations have required 3D graphical 

models of buildings and land features, in order to render 

them for various applications. We believe that the 

construction of models interactively while outdoors, 

matching real physical features, is a convenient method 

that is efficient and visually verifiable. The authors know 

of no system that performs 3D outdoor AR graphical 

modelling; traditionally, models are designed in 2D 

desktop applications. 

We have developed a user interface known as Tinmith-

Hand, which uses pinch gloves and hand tracking to 

control a menu and manipulate 3D virtual objects. This 

has been implemented and used to develop a modelling 

system, known as Tinmith-Metro, which allows us to 

capture the designs of outdoor buildings and structures. 

The 3D modeller is based around the intuitive nature of 

constructive solid geometry (CSG) operations, which we 

include as an integral part of the user interface. 

The remainder of this section will discuss the aims and 

objectives of our work. To place our work in context with 

that of other researchers, section 2 provides an overview 

of related work that forms a foundation of our ideas. We 

describe an example in section 3 showing from a user’s 

perspective how Tinmith-Metro is used to model a 

building. The novel menuing system with pinch gloves is 

discussed in section 4, followed by the use of hand 

tracking and image plane techniques for selection and 

manipulation of models in section 5. The graphical 

modelling concepts (CSG) are explained in section 6, and 

how they are used to build complicated outdoor 

structures. The implementation details of the overall 

system are described in section 7. We conclude this paper 

discussing some of the problems solved, future directions, 

and the knowledge gained from this investigation. 

1.1 Augmented Reality 

Augmented Reality is the process of overlaying 

computer-generated images over the real world. By using 

a transparent head mounted display (HMD) placed on the 

head, combined with a wearable computer, (see Figure 1) 

it is possible for the user to walk outdoors and the 

computer to draw images to enhance their vision. Part (3) 

of Figure 2 shows how images from the real world are 

combined with computer generated images, using a Sony 

Glasstron HMD. This HMD uses a half-silvered mirror as 

an optical combiner, presenting the final image to the 

user. AR systems allow the user to have “X-ray vision”, 

visualising objects which may not be visible to the user in 

the real world. 

1.2 Why Is Outdoor AR Hard? 

Performing outdoor AR research is harder than most other 

kinds of virtual environments, with the lack of 

lightweight, portable equipment that performs the tasks 
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desired. Requiring all the hardware to be portable places 

many restrictions on the equipment that can be used, as 

much of it is too large or cannot run from a battery. 

The field of virtual reality (VR) also suffers from the lack 

of proper input devices and sub-optimal tracking systems. 

Therefore new input devices, interfaces, and trackers are 

continuing to be developed in an attempt to solve these 

problems. However, many of these devices require fixed 

infrastructure and are not useable in mobile outdoor 

environments. Two excellent papers - (Azuma 1997) and 

(Azuma 1999), explain the problems of working outdoors, 

and the various technologies that are currently available. 

The problem of tracking and registering virtual images 

with the user’s view of the physical world is a main focus 

of AR research, as can be seen in many current AR 

publications. However, there is little previous work in the 

area of user interfaces for controlling AR systems in an 

outdoor setting, which is the main focus of this paper. 

1.3 Aims of this work 

Previous AR and VR systems tend to be focused on the 

presentation of information with a standard set of 

interaction techniques. The construction of graphical 

models by in large is performed external to the virtual 

environment. When the construction of the models is in a 

virtual environment, this tends to be the manipulation of 

pre-existing graphical objects, such as houses, cars, or 

tanks. We wish to be able to construct and interact with 

the graphical models in the virtual environment at a 

deeper level. Furthermore, the construction of these new 

models from scratch would be performed outdoors, with 

minimal prior knowledge of existing physical structures, 

and with a small number of primitive tools. 

We desired to implement a user interface and set of 

applications that would allow the user to construct new 

models, and to do this using natural head and hand 

gestures. Therefore, we wish to keep the hands free from 

holding input devices if possible. 

1.4 Concepts implemented 

The user operates the application with the Tinmith-Hand 

user interface, using head movement, hand tracking, 

pinch gloves, and a menu system to perform the following 

object manipulation tasks: 

Object selection – the user can point at objects and select 

them, placing them into one of several clipboards.

Object transform – perform translate, rotate, and scale 

operations, in a variety of different ways. 

Create primitives – 3D primitives can be created in the 

virtual world, from infinite planes as the most primitive, 

to complex graphical models such as a water heater. 

Combine primitives – previously constructed and 

manipulated primitives may be combined together using 

Constructive Solid Geometry (CSG) operations to 

produce higher level graphical objects. 

The following components are used to implement the user 

interface and applications, used to construct large 

graphical objects outdoors: 

Menu system and pinch gloves – the command interface 

to the system through the pinch action of our gloves. 

These gloves were custom built to integrate in with the 

rest of the system. 

Four integrated pointing techniques – the system is 

capable of using four interchangeable pointing devices to 

supply input, depending on the requirements at the time 

and the suitability. The devices are one and two handed 

finger tracking, a head orientation eye cursor, and a track 

ball mouse. 

Image plane interaction techniques – these techniques are 

where the objects are manipulated on a 2D plane 

perpendicular to the current view direction (Pierce 1997). 

By combining pointing with image plane techniques, it is 

possible to manipulate objects in a 3D environment, 

selecting an appropriate camera angle simply by walking. 

Application tailored menus – to support the domain 

specific construction application, menu options are added 

that tailor the menu system to the domain specific tasks. 

CSG operations – users intuitively understand operations 

such as carving and combining objects. We have 

leveraged this understanding by basing the interactive 

construction of complex real world shapes around the use 

of CSG operations. 

2 Background 

2.1 Previous Augmented Reality Systems 

Most augmented and virtual reality systems are oriented 

toward information presentation, the user wearing a 

HMD, moving around the world, and experiencing the 

artificial reality. There have been a small number of 

systems for outdoor augmented reality such as the MARS 

Touring machine (Feiner 1997), NRL BARS system 

(Julier 2000), previous UniSA Tinmith navigation 

systems such as (Piekarski 1999) and (Thomas 1998), and 

UniSA ARquake (Thomas 2000). However, these systems 

only allow the user to control the presentation of the 

information, and not actually create new information, 

especially 3D models. 

2.2 Previous Virtual Reality interaction work 

There are a number of concepts we have leveraged from 

the area of VR interaction, although most of these are 

focused on the manipulation of existing objects. As a 

result, the construction of new objects from primitive 

building blocks is a fruitful area of investigation. 

Our system builds on concepts from a number of 

researchers, including: Proprioception and the placement 

of objects relative to the body in (Mine 1997); The 

viewing and manipulations of objects using the Worlds-

in-Miniature (Stoakley 1995) and Voodoo Dolls (Pierce 

1999) techniques; Two handed 3D interaction techniques 

in (Hinckley 1994) and (Zeleznik 1997); selection and 



manipulation techniques like the GoGo arm (Poupyrev 

1996) and various others covered in (Bowman 1997). 

A menuing system developed at a similar time as ours is 

an immersive VR system using Pinch Gloves (FakeSpace 

Labs 2001) recently described in (Bowman 2001). 

Although a similar concept as ours, it was different in that 

it was very much like traditional pull down menus. The 

top-level menu items were available on one hand, and the 

second level options on the other hand. Using the small 

finger it was possible to cycle through options if there 

were more than three options. The menus were limited to 

a depth of two, and it is not scalable to a large number of 

hierarchical commands. Our system is fundamentally 

different due to the way the user interacts with the menu. 

2.3 Current outdoor capture techniques 

There are a number of techniques to construct large 

outdoor graphical models. A simple technique to model 

an existing building is to measure up and record the 

dimensions of an entire building with a tape measure for 

example. This is very inefficient and time consuming 

because there may be inaccessible features, and the user 

must switch from indoors to outdoors at each iteration to 

enter the model and then verify its accuracy. Faster 

methods like laser scanning or multiple cameras (such as 

Façade in (Debevec 1996)) can be used to recover 

models, but tend to have large quantities (sometimes 

millions) of wasteful facets, and occluded objects will not 

be seen by the camera. 

3 Outdoor model construction 

We propose our novel CSG primitive based approach as a 

way of interactively allowing users to build models 

outdoors, without the limitations of the other discussed 

methods. Although there are other limitations introduced 

with this process, they are different from the other two 

methods outlined earlier, and so the user now has an extra 

choice when deciding how to capture 3D models. The 

method is designed to capture reasonably simple objects 

to the accuracy of the tracking devices, and the user can 

create highly detailed models as they see fit, while 

keeping others simple if desired. 

3.1 Building construction example 

Our first application example for Tinmith-Metro is the 

modelling of large outdoor structures. An example of how 

to construct an object model is detailed to examine this 

modelling technique. This example models a school 

building, which is a round shape, with an air conditioning 

tower on the roof, and large windows on the side. The 

building is neither a box nor a cylinder, and so requires 

different primitives for modelling. 

System start up – The user dons the wearable computer, 

HMD, and pinch gloves. The user then starts Tinmith-

Metro and performs the calibration of the trackers. 

Create perimeter walls – The overall top down outline of 

a building must first be specified. In the example 

building, there are 32 facets, but the user will only define 

the outline of the building with 10 planes for simplicity. 

The building is approximately a cylinder, but not similar 

enough to use the real cylinder primitive. To create the 

outline, the user creates infinite planes to mark each wall. 

Each plane is created by the following: 1) the user 

positions themselves to look down the edge of a building 

wall, at any convenient distance, 2) the user places the 

eye cursor along the wall edge, 3) the user selecting the 

menu option with the gloves to create a right facing wall, 

and 4) the right facing wall (an infinite plane) is added to 

the virtual world intersecting the eye cursor and 

perpendicular to the image plane. This wall cuts the entire 

infinite world in half, in the same way as the real wall 

does, with the left being inside the building, and the right 

being outside. By walking around the building and 

marking each plane, the user is carving away sections of 

the infinite space and defining the volume of the building. 

Eventually, when the user has completely circled the 

building, the perimeter of the volume is no longer infinite, 

and is now closed. The final result is a 2D bounded 

perimeter as shown from the top down view in (1) of 

Figure 2. This figure shows the very long planes that 

created the bounding volume. 

Create floor and roof – To complete the first solid shape 

of the model, the 2D perimeter is constrained with a roof 

and floor. These are created by the user looking toward 

the centre of the building and creating a default floor at 

zero metres and a default roof at three metres. 

Create solid object – The infinite planes are all separate 

and do not currently form a proper solid object. To form a 

solid object, the CSG intersection operation is selected 

from the Tinmith-Hand menu with the pinch glove. Once 

the operation has been initiated, the renderer draws a 

preview of current model. The user interactively corrects 

the height of the roof by lifting or lowering it to match the 

correct height of the building; and this is verified by using 

the registration of the virtual object against the physical 

building. When the roof is in the correct position, the 

Figure 2 - Tinmith-Metro Demonstrating Various Stages of Construction of 3D School Model 

(1) Satellite view of infinite planes defining building volume (2) Solid round shaped building, (3) Immersive HMD shot of school, facing south 



intersection operation is committed with another glove 

menu selection. The model of the building is now at the 

stage depicted in (2) and (3) of Figure 2. 

Create air conditioner tower – The air conditioning tower 

may be added in a number of ways. One method uses a 

default cylinder primitive, scaled and moved into 

position. A second method is to use the infinite planes 

technique to create a completely new shape. In this 

example, the user will use the infinite planes technique 

and the same CSG intersect operation, but this time the 

tower roof is higher, with a reduced width. 

Combine two objects together – Currently, portions of the 

air conditioner tower exist inside the building object. The 

tower contains internal facets that are not visible and 

wastes graphics resources. Using the CSG union 

operation, the system can merge the tower and building 

objects into one object, removing the internal facets and 

simplifying the model, producing a single object. 

Create windows – The next task for the user is to add 

coloured depressed windows into the building, which is 

done by carving into the building. First the user creates a 

box shaped object to use as a tool, whose profile matches 

that of the window, and has a depth of at least the 

window’s depression. The box object tool may be created 

using a prefabricated model or constructed by the user. 

The user positions themselves to be able to see the 

window easily, and the CSG difference operation is 

selected. Using the gloves, the user pushes the box object 

tool into the building, in the same way that a cookie cutter 

is used to remove portions of dough. The box object tool 

is pushed into the wall until it is the same depth as the 

window depression. The facets cut into the building are 

coloured blue like the window, and are also indented into 

the shape, they are not just surface modifications. 

3.1.1 Results 

The user has just created a model of a building that is 

approximately round, along with an air conditioning 

machinery tower, and carved in windows, shown as a ray 

traced image in Figure 3. The user may continue to model 

the building to any level of complexity that they desire, 

depending on the requirements for the model. 

The accuracy of the objects created with this system is 

largely dependent on the tracking hardware used, and the 

amount of care taken by the user to accurately enter the 

information. For position tracking, the Trimble Ag132 has 

an accuracy around 0.5 metres. For orientation tracking, 

the IS-300 has a resolution of 1° static and 3° dynamic 

accuracy, with models measured as close to the building 

as possible (without degrading the GPS) are the most 

desirable. 

3.2 Street furniture example 

A second application example for Tinmith-Metro is to 

position models of typical community infrastructure, 

“street furniture”, such as park benches, rubbish 

containers, and street lamps, located at our university 

campus. In this second example, the user operates a 

customised menu structure in Tinmith-Metro to position 

prefabricated models of smaller street furniture items. 

These models were created using NewTek LightWave 

and converted into the custom Tinmith file format. 

Create grass area – The user creates a grass area by using 

the infinite planes technique to mark out a perimeter. The 

area the user is marking is between numerous campus 

buildings, and so the user approximates the area with 

several planes. A special “create grass” menu operation is 

selected, and then floor and roof are both created at 

default heights and intersected with the perimeter. The 

resulting object is a grass slab that is 5 cm thick. The 

purpose of the grass is to supply a background for the 

objects, and so accuracy or shape is not a concern. 

Place down objects – The user moves around the area, 

standing near the real world objects. The user has 

previously modelled the required objects such as lamps, 

rubbish bins, benches, and trees on a desktop system, at 

the desired accuracy. By using the glove and menu, the 

object to place down is selected and then instantiated into 

the modelling environment. 

Placement defaults and adjustment - By default, an object 

is placed one metre in front of the user, and oriented away 

from the image plane. This allows the user to immediately 

place an object at the correct orientation and position. The 

user may then manipulate the object if desired. Image 

plane techniques are inappropriate for the rotation of an 

object about the Z (heading) axis when in immersive 

view; therefore the top down map is used instead. If an 

object is not the correct size, it can be easily scaled to size 

using two handed manipulation techniques. 

3.2.1 Results 

After the previous process is complete, the user has 

captured a model depicting the grass area, with various 

Figure 3 - Final rendered output of 3D school building model, 

captured using new techniques demonstrated in Tinmith-Metro 

Figure 4 - Outdoor Furniture Placement Screenshot 



items of street furniture laid out on top. This model can be 

viewed immersively or with orbital view in the system (as 

in Figure 4), or displayed on a separate VR or desktop 

system indoors. 

4 Glove based menu system 

The menuing system of Tinmith-Hand provides the user 

interface to a fully functional 3D modelling system, 

supporting object hierarchies, CSG, and editable 

transformations, without the use of a keyboard or 

traditional mouse. Although the system has a trackball 

attached, it is preferable to avoid using this device, as the 

hands are used for the object manipulation tasks. We 

found that while the trackball was functional and used to 

start the system up from X Windows, it was more difficult 

and less intuitive to use during modelling. 

The menu options, shown in Figure 5, are presented in a 

transparent green dialog box at the bottom of the display, 

which can be repositioned if desired. We used 

transparency, allowing the user to see through the menu 

in order to reduce visual clutter caused by the menu 

boxes. The menu colours and transparency are 

dynamically changeable. 

Each menu option is assigned to a finger on the gloves. 

To select an option, the user touches the matching 

fingertip with the thumb tip. For example the CSG option 

would be selected if the ring finger (LF3) and thumb of 

the left hand were pressed together. To indicate a 

selection, the user must hold the press for a short period 

of time to eliminate key bounce problems or accidental 

brushing of the glove. When the press is complete, the 

system beeps and then moves to the selected node in the 

menu hierarchy. The system then can execute an action at 

this node if required. In addition, Tinmith-Hand may 

present a new set of options or return back to the top level 

of the menu structure if the operation is complete. By 

pressing any finger on the palm of the glove, the menu 

returns back to the top level. 

The menus do not float in the 3D world like other VR 

menus such as (Bowman 2001) and (Mine 1997), since 

we feel that these menu options should always be visible 

during the graphical object creation task. The menus are 

fixed to the screen, and designed to aid and focus the user 

on the task of graphical object construction. 

Currently, the menu contains over 100 nodes arranged 

into a hierarchy, with a maximum of 8 choices per level. 

Some operations in the system require multiple steps to 

complete, and hence go deeper into the menu at each step, 

but most can be started within 2 clicks of the root menu. 

The 8 choices per level could potentially be expanded 

with multi-modal interfaces employing both gestures and 

voice recognition. 

4.1 Tinmith-Glove 

Wearable computers supporting interactive augmented 

reality applications require input devices to issue 

commands to the computer, and 3D tracking to 

manipulate graphical objects. Tinmith-Glove is our 

custom built, low cost set of pinch gloves to support 

command entry and hand tracking. We present the design 

and implementation issues for our gloves to help others 

construct inexpensive wearable input technology. 

4.2 Current technology 

Currently, there are a small number of products on the 

market that allow users to interact with virtual 

environments. Each of these have different uses, and 

many have a cost measured in thousands of dollars per 

unit. 

Two gloves were considered before the start of this 

project, as they performed similar operations to those 

desired. The FakeSpace PinchGlove (FakeSpace Labs 

2001) contains electrical sensors at each fingertip to 

measure touching, while the VTi CyberGlove (Virtual 

Technologies 2001) uses bend sensors to measure finger 

positions, designed mostly for motion capture. For our 

application, finger tip to thumb tip touching detection is 

required, and so the PinchGlove with conductive sensors 

would be the most appropriate. 

The Tinmith-Glove was designed to allow the use of 

glove based input technology to support virtual and 

augmented reality applications. These gloves would 

perform similar pinching tasks as the PinchGlove, while 

at the same time allow us to customise the placement of 

the sensors, add new ones to increase the functionality, 

and have a low price that makes the technology available 

to anyone. Our research environment requires a flexible 

hardware implementation that makes changes simple. 

4.3 Construction 

The glove is based on a typical gardening glove that 

loosely fits the hand. A correct fit is important; the glove 

may become damaged during removal if it is too tight. 

Detection of finger presses is by the completion of an 

electric circuit; a conductive surface is required on the 

tips of the thumbs and fingers. Special flexible metallic 

tape was acquired from a hardware store, which is 

normally used to adhere reflective insulation inside the 

roofs of houses. This tape is conductive on one side and 

sticky on the other. Pieces were cut out and placed over 

the fingertips. In the first version of the glove, the tape 

was wrapped all the way around the fingertips, but on the 

     LF4      LF3       LF2      LF1      RF1      RF2      RF3       RF4 

Figure 5 - Tinmith-Gloves with metal pads, tracking targets, and top 

level menu mappings used with the Tinmith-Hand user interface 



second design, only the places where pressure is applied 

had metallic surfaces. This was done to minimise the 

amount of area that was conductive, preventing problems 

where fingers would falsely contact each other. 

Wires were placed onto the edge of the metal pads, with 

another layer of tape placed on top to secure it. The tape 

layers were fused together by running a hot soldering iron 

over the surface, melting the sticky backing and bonding 

the metallic layers together. These wires were run to an 8-

pin connector on the wrist, with hot glue securing the 

wires and connector to the glove. During extensive 

outdoor use there have been no breakages so far. 

Cables are used to connect the gloves up to a processing 

box, which interfaces to the laptop via a serial port. A 

Parallax (Parallax 2001) Basic Stamp BS2 

microcontroller performs this processing. The BS2 

features 16 I/O pins, a serial port, EEPROM, and voltage 

regulator. Hardware development time is low because the 

MCU comes fully integrated and only requires a power 

supply to start using it. A simple interface prototype 

board was built in order to connect the glove cables up to 

MCU, with some resistors added to protect against short 

circuits. 

The control program is written in a special high level 

language for the BS2. This language allows the developer 

to write programs in a Basic-like language to use the I/O 

pins and the serial port. The control loop applies voltage 

to each finger one at a time, and polls for which pad the 

voltage is detected on (thumb, palm, or none). If this 

value is different from the last check, then a single byte is 

sent to the serial port indicating that the finger has 

changed state, along with the new location of the finger. 

This polling process is performed 30 times per second for 

each finger, ensuring that quick presses are accurately 

captured.  

In the laptop, the Tinmith system reads the serial message 

and then converts it into an internal event that is made 

available to other objects. These events are similar to 

those emitted by a keyboard, and so Tinmith code 

previous written for desktop devices can be modified 

easily to support the Tinmith-Glove. Tinmith performs 

debouncing to remove small false contacts that are 

generated as the fingers and thumbs are pressed together. 

Currently, the glove supports both finger and palm 

pressing, although others could be added easily. We 

envisage a variety of different user gestures. For example, 

in the ARquake system (Thomas 2000), which used a 

plastic gun as a prop, it would be possible to replace this 

with a gun or fist gesture, thereby alleviating the need to 

carry any extra hardware. 

4.4 3D hand tracking 

Hand tracking is the traditional method for 3D object 

manipulation in immersive virtual environment, but this 

tracking is customarily expensive and non-portable. With 

the advent of fast processors and inexpensive video 

cameras, we have used pattern recognition to track 

fiducial markers. We utilised the freely available 

ARtoolkit system (Kato 1999), which is a set of generic 

computer vision libraries. Using a single camera, the 

ARtoolkit library is able to resolve a full six-degree of 

freedom tracking solution for multiple targets present in 

the video frame. The fiducial markers mounted on the 

thumbs are simple 2x2 cm cardboard squares with a black 

outline and a pattern in the centre. 

With our P2-450 laptop and USB camera mounted on the 

head, we achieve capture rates of around 5-10 fps with 

only 20% CPU usage, so the system is feasible on most 

modern machines. The quality of the tracking was also 

excellent under natural light, with minimal false 

detections caused by the environment. While the overall 

position of the tracking is good, the orientation values are 

quite inaccurate (jittering over 10°-20° angles), and hence 

not a complete solution, but one which is workable for 

simple cases. 

The placement of the fiducial markers on the hands is 

important as we need to ensure they are visible at all 

times to the camera. We first thought to place the targets 

on the back of the user’s hand, but we quickly realised 

that being large, the hands easily fill the field of view of 

the camera. It was decided that fingers would allow finer 

motor control and more movement. The ends of the index 

fingers were dismissed as they moved too much during 

the selection of the menu option with the index finger and 

thumb. We noticed that the thumb did not move much 

during a pinching gesture however. People tended to 

bring their fingers down to meet their thumb as opposed 

to bringing the thumb up to meet the fingers. As a result, 

the targets were placed on the top of the thumb. As 

another option, the index finger could be used for one 

handed cursor movements, with the cursor attached to the 

dominant hand index finger, and the selection of the 

menus with the other. 

5 Pointing and selection techniques 

With Tinmith-Hand, the user has a choice of four input 

devices for pointing and selecting. Some are 2D, like the 

trackball and eye cursor, while the finger tracking is 3D 

based. The user chooses whichever device is appropriate 

at the time for the particular control or selection task. 

Traditional desktop applications only use one device, or 

merge the devices to all be the same. 

5.1 Hand based finger tracking 

Tinmith-Hand is designed to support applications that 

interact with graphical objects and enter spatial 

information. We chose hand gestures to be the main 

interaction method for the user interface as they seemed 

to fit well with the natural operations of the CSG 

modelling system. 

Figure 6 - (1) 3D Cursor Mapped On To Hand 

(2) Rear view of glove showing metal pads and wiring 



Given the location of the hands from the markers, the 

system overlays registered 3D axes, as shown in (1) of 

Figure 6. At the same time, a 2D flat cursor (similar to a 

mouse cursor) is overlaid on top. The cursor is placed in a 

desired location by movement of the user’s hand. When 

the user activates selection using the menu and gloves, a 

ray is fired into the scene from the 2D cursor, and the first 

object hit is selected. Although 3D coordinates for the 

hands are available, no 3D based interaction techniques 

have been implemented at present. 

5.2 Eye cursor 

The eye cursor is fixed to the centre of the display, and is 

controlled by the user rotating their head to point to 

different objects in the world. We have found the eye 

cursor to be very useful during the construction mode. In 

particular for when looking down a wall, it is used to 

specify the direction of the infinite plane, being coplanar 

with the wall. Objects may also be selected with this 

mode, the user aims their head at the object, and the ray 

fired is tested for intersecting objects. 

5.3 Handheld trackball 

The handheld trackball device has been logically attached 

to a 2D cursor. The trackball is operated in a traditional 

manner for cursor movement and selection, and is also 

required to start the software from the X window 

manager. We have found the trackball useful for 

debugging purposes, but it prevents the user from using 

the pinch gloves, and therefore the least effective. 

5.4 Object selection 

When a user performs a pick operation on a graphical 

object, the system determines the closest polygon under 

the cursor. When a polygon is selected, the simplest 

object is chosen, but the user can traverse up the hierarchy 

to select more of the model if desired. Every polygon and 

object in the scene exists in the world model hierarchy, 

many objects are also children of other objects, and are 

represented using a file system notation. For example, the 

hand of the human avatar stored in the scene graph is 

represented as /human/left_arm/lower/wrist-/hand. 

5.5 Selection buffers 

For CSG operations, users are required to select multiple 

objects, operate on them independently, and then combine 

them together to produce a final object. One solution is to 

repeatedly select and deselect objects as required, but 

selection is tedious and error prone. As a result, rather 

than having the ability to select just one object and 

operate on it, the user operates on collections of objects in 

the selection buffers, which are very similar to traditional 

clipboards. In any particular selection buffer, the user 

may place multiple selected objects. The user is able to 

switch between selection buffers and put different objects 

into different buffers. CSG operations are performed 

between two selection buffers at a time. For example, a 

user may intersect all the planes in buffers A and B while 

moving only the planes in buffer B, the result going into 

A. Later, the user can place some different planes into 

buffer C, rotate them, and then intersect them with the 

previously existing result (this is how the construction of 

the building was performed in the example). 

5.6 Object transform techniques 

Tinmith-Hand supports a number of image plane 

techniques for manipulating (move, rotate, and scale) 

objects in the environment. These image plane techniques 

require one or two input cursors via the four input devices 

(one and two handed finger tracking, eye cursor, or hand 

trackball) and a selection buffer to operate on. The input 

device and the selection buffer are selected by the user via 

the menus. It is important to realise that these operations 

are only 2D based, and so operations are performed only 

in a direction perpendicular to the camera direction. 

6 CSG modelling system 

At the centre of the modelling system is the CSG engine. 

CSG allows the construction of complex 3D graphical 

shapes using only a small number of primitives. It uses 

the same CSG concepts from graphical software like ray 

tracers (such as POV-Ray (POV-Team 2000)) that 

traditionally support only mathematically simple objects 

such as infinite planes, spheres, and objects that can be 

described by an equation. This limits the complexity of 

models that are possible, as things like triangles are not 

possible to define with a surface equation. As a result, by 

combining these primitives together using CSG, it is 

possible to describe new ones. 

Each primitive has an outside and inside, and can be 

tested if an object, or part of it, is inside or outside 

another object. The three fundamental CSG operations 

(based on set theory) are shown in Figure 7. 

As our fundamental primitive, planes are infinite objects 

that have a front and back face, (defined by the surface 

normal) and the space behind the plane is defined to be 

‘inside’. Hence, if 6 planes, all perpendicular to each 

other, are intersected, they form a closed 3D box with an 

‘inside’. 

Complex shapes may be built up using infinite planes, as 

was shown in the house example. The example only dealt 

with the case of a convex shape however. A concave 

shape is one in which there are holes or other indents in 

the surface. Using a set of infinite planes, it is not possible 

to model a concave shape such as a T, L, or donut shaped 

building (as shown in Figure 8) using a single CSG 

operation. 

A concave building can be created by breaking the 

problem down into stages. The following is an example 

showing how to construct an L shaped building: 

1. Create a bounding box representing the entire space 

used by the building. Use infinite planes and CSG 

Pyramid          Sphere             Union         Intersection       Difference 

Figure 7 - CSG Primitive Operations 



intersect to produce this box, and store it in a 

selection buffer. 

2. Create a second box representing the space used by 

the hole we want to remove. Use the same methods 

as previous, and store in a different selection buffer. 

3. Activate the CSG difference between the two buffers 

created previously. The CSG engine will show the 

resulting object and allow the user to fine tune the 

locations of the objects until everything is correct. 

The user commits the result, and the L shaped 

building is now modeled. 

This process can be repeated as many times as necessary 

to carve out other parts of the building such as windows, 

tunnels, garages, bridges, and donuts. 

6.1 CSG engine implementation 

In order to support applications such as Tinmith-Metro, a 

complete CSG engine was implemented. This engine 

takes in a series of object meshes from the object 

hierarchy, and calculates the result in real time to allow 

the user to interactively view and modify the CSG 

operations. 

As an example, given two solid cubes A and B, they will 

each contain 6 facets, and be a convex shape. A 

difference operation A – B (carving one away from the 

other) requires the objects be subdivided, with each 

polygon being used to cut every other polygon in half. 

This produces a complex mesh that is then processed, 

throwing out facets that do not fit the set operation. The 

subdivision is then reversed to join back facets that were 

not altered, and the result is ready to be rendered. 

This process is computationally expensive, as whenever 

one of the source objects moves, the models need to be 

newly subdivided, processed, and simplified. Given 

simple cubes, cylinders, and other objects, the system 

runs in real time at interactive frame rates. However, 

given two complex spheres with hundreds of varying 

facets each, this process can slow down to the point where 

it is unusable. 

There are many methods for resolving CSG operations, 

using rendering hardware, ray-tracing techniques, or 

voxels, but the required hardware cannot be used 

outdoors, does not run at real time rates, or does not 

preserve the original facet mesh structure. 

7 Tinmith system 

The Tinmith-Hand interface and Tinmith-Metro 

application are part of a larger AR system, Tinmith-evo5. 

The Tinmith system is built up of both hardware and 

software, using off the shelf products and custom built 

components for our research, as some of our needs can 

not be met with existing technology. 

7.1 Hardware 

The wearable computer system as shown in Figure 1 is 

based on a Gateway Solo P2-450 laptop (64 mb RAM, 

ATI Rage OpenGL) mounted on a hiking backpack. An 

Intersense IS-300 hybrid tracker performs orientation 

sensing. Position information is gained from a Trimble 

Ag132 GPS, with an accuracy of 50 cm, varying with 

conditions. The display is a Sony Glasstron PLM-700e 

monocular SVGA display. A large 12V battery powers 

the various trackers, as well as the small LCD television 

on the back for debugging and spectators to view. A 

SuperCam WonderEye USB video camera is used to 

provide images for the hand tracking system. 

The laptop runs RedHat Linux 7.0 with kernel 2.4 as its 

operating system, including the standard GNU 

development environment. XFree86 v3.3.6 is used for 

graphics, as it does hardware accelerated OpenGL using 

Utah-GLX. The performance of the older ATI Rage 

chipset is adequate for our current needs. Currently, we 

use USB for our camera as there is no other way to 

capture video with a Linux laptop. 

7.2 Tinmith-evo5 software architecture 

The menus and interaction techniques are only the 

application level interfaces, those that communicate 

directly with the user. To implement a system of this 

magnitude, a modular architecture with an appropriate 

framework must be provided. 

Although sharing the same name as its predecessors 

(Piekarski 1999, Thomas 1998), Tinmith-evo5 is a 

completely new design and implementation, written in 

C++ to maximise speed and efficiency. The complete 

details of the system are not presented in this paper, but 

basically, the overall goal is to process data from input 

devices, make changes to the internal state of the system, 

and then render images to the user’s display. At the same 

time, speed and practicality of implementation were 

major goals, as we wanted to use the system in real world 

applications. See (Piekarski 2001) for more information. 

Input devices and trackers are firstly abstracted away into 

objects, which are then made available for other objects to 

read in and process. When new tracker information 

arrives, the class notifies listening objects using a callback 

mechanism, which then allows the listener to recalculate 

its internal values based on this new information. The 

changes are propagated throughout the system until all 

objects have been updated, and then the display is 

rendered when the system is idle. This flow of data 

through the system allows us to write small component 

based objects which handle one task, and then glue them 

all together. By default, communication is done using fast 

function calls in a single process, and there is no 

threading, shared memory, network, system call, or RPC 

overhead. As a result, the propagation of values through 

the system has little effect on the CPU, leaving resources 

available for rendering and processing tracker updates. If 

desired however, network serialisation objects can be 

plugged in to distribute values over a network, but the 

default is to run locally, maximising performance. 

Figure 8 - Convex Trapezoid, and Concave T, L, and Donut Shapes 



A key feature of the system is the object repository, which 

is a place that objects can be stored to allow other objects 

to access them easily. A standard way of retrieving 

objects is making all objects accessible through many 

global pointers, but it is well known that this method 

becomes unworkable for hundreds of objects connected 

together in the system. Our solution is the creation of an 

object storage system that stores pointers to all the objects 

in the system, as they are created. Each class that can be 

stored implements methods to perform serialisation and 

callbacks, using special preprocessor macros and code 

generators. To reference an object in the repository, a 

string resembling a file system path name is used. The 

forward slash is used as a delimiter, and this allows us to 

organise the classes into categories in a tree structure. 

Other objects wanting a reference to an object simply call 

a method that retrieves the object pointer and returns it. 

Our store is as efficient as a global variable as it is mostly 

accessed only at object creation, but it is also a dynamic 

run time system that can be changed as the system is 

running. 

The object repository contains the menu system, the 

tracking system definition, the graphical objects, and all 

other system objects. At system start up, the object 

repository firstly reads through the physical disk file 

system (which matches the object storage paths) and 

reads in object definition files. These files contain start up 

values for various classes, and are created into 

instantiated objects, which are used to configure the 

environment for the rest of the system. Once completed, 

other portions of the system can then execute to configure 

the particular application and task, creating the necessary 

objects. Since each object may be serialised, we may 

snapshot the state of the system and reload it, or distribute 

it over a network. 

The menu state objects are created based on the 

definitions contained on the disk, which are then read in 

by the menu object to control the state of the application. 

Since the menu is decoupled from the application, a 

translation layer is used to convert actions into method 

calls. Our trackers are stored in the system, and by using a 

feature called an object symbolic link, it is possible to 

switch the objects supplying tracker data to other objects 

completely transparently. Using this, it is possible to 

implement a patch board of tracking devices and switch 

them for a variety of tasks. We believe that the ability to 

transparently change input devices and coordinate 

systems is a key to making the interaction techniques of 

Tinmith-Hand feasible. 

The rendering system also uses the object repository, and 

is a full hierarchical modelling system similar to SGI’s 

Inventor, supporting a scene graph, as well as 

transformation nodes controlling the movement of all the 

child objects. Each object in the scene graph is stored in 

the object repository, allowing polygons and objects to be 

easily referenced using path names by other code, so they 

can be controlled. Also, a tracking device may be attached 

to any node in the scene graph, and the device will 

automatically apply its movement to the node via 

callbacks, moving all children. Apart from rendering 

objects, we also use the hierarchical renderer to resolve 

tracker data so that it can be rendered accurately. The user 

is modeled as a human 2 metres tall, with 15 separately 

movable parts, and we attach our trackers to this model. 

The ARtoolkit camera is modelled relative to the head of 

the body, and by traversing through the scene graph we 

can determine the targets relative to world or head 

coordinates easily. 

Another use of this human model would be to implement 

a GoGo arm using simple orientation sensors. Imagine 

attaching orientation trackers (such as the TCM2) to the 

upper and lower portions of the user’s arm, the system 

would then apply the tracker’s orientations to the shoulder 

and elbow joints of the human model. From these angles, 

and the known length of the user’s upper and lower arm, 

the system would be able to determine the location of the 

base of the user’s hand. 

It is important to understand that the architecture used for 

this system was originally designed to support AR 

applications, although it could be used to support a wide 

variety of systems where data flow and objects are used, 

such as: VR systems, 2D GUI applications, and constraint 

systems. There is a large amount of code present in the 

system to handle 3D rendering, user interface components 

such as transparent dialog boxes, and transformations for 

the Earth’s various coordinate systems. 

8 Conclusion 

This paper has introduced the Tinmith family of systems, 

designed to allow complex outdoor user interaction in 

augmented reality environments. Using the Tinmith-evo5 

software architecture, we have implemented the Tinmith-

Hand AR user interface, and used this as a foundation for 

the Tinmith-Metro city modelling and capture application. 

Using the techniques described in this paper, we can 

control the real-time CSG engine and produce models of 

arbitrary complexity easily, and verify them as they are 

being created. These models can then be saved and 

viewed later by others on desktop or virtual reality 

systems. 

The ability to capture models outdoors has a wide number 

of uses, which we are only now beginning to explore with 

our system. These have applications for a variety of 

different areas, such as the GIS, environmental, 

surveying, and architectural fields. 
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