
The Tinmith System - Demonstrating New Techniques

for Mobile Augmented Reality Modelling

Wayne Piekarski and Bruce H. Thomas

Wearable Computer Laboratory

School of Computer and Information Science

University of South Australia

Mawson Lakes, SA, 5095, Australia

{wayne, thomas}@cs.unisa.edu.au

Abstract

This paper presents user interface technology, using a glove

based menuing system and 3D interaction techniques. It is

designed to support applications that allow users to construct

simple models of outdoor structures. The construction of models

is performed using various 3D virtual reality interaction

techniques, as well as using real time constructive solid

geometry, to allow users to build up shapes with no prior

knowledge of the environment. Previous work in virtual

environments has tended to focus mostly on selection and

manipulation, but not starting from an empty world. We

demonstrate our user interface with the Tinmith-Metro

application, designed to capture in city models and street

furniture.

Keywords: wearable computers, augmented reality, user

interfaces, constructive solid geometry, 3D modelling.

1 Introduction

We have been investigating immersive 3D outdoor

Augmented Reality (AR) architectures and applications.

Our previous investigations have required 3D graphical

models of buildings and land features, in order to render

them for various applications. We believe that the

construction of models interactively while outdoors,

matching real physical features, is a convenient method

that is efficient and visually verifiable. The authors know

of no system that performs 3D outdoor AR graphical

modelling; traditionally, models are designed in 2D

desktop applications.

We have developed a user interface known as Tinmith-

Hand, which uses pinch gloves and hand tracking to

control a menu and manipulate 3D virtual objects. This

has been implemented and used to develop a modelling

system, known as Tinmith-Metro, which allows us to

capture the designs of outdoor buildings and structures.

The 3D modeller is based around the intuitive nature of

constructive solid geometry (CSG) operations, which we

include as an integral part of the user interface.

The remainder of this section will discuss the aims and

objectives of our work. To place our work in context with

that of other researchers, section 2 provides an overview

of related work that forms a foundation of our ideas. We

describe an example in section 3 showing from a user’s

perspective how Tinmith-Metro is used to model a

building. The novel menuing system with pinch gloves is

discussed in section 4, followed by the use of hand

tracking and image plane techniques for selection and

manipulation of models in section 5. The graphical

modelling concepts (CSG) are explained in section 6, and

how they are used to build complicated outdoor

structures. The implementation details of the overall

system are described in section 7. We conclude this paper

discussing some of the problems solved, future directions,

and the knowledge gained from this investigation.

1.1 Augmented Reality

Augmented Reality is the process of overlaying

computer-generated images over the real world. By using

a transparent head mounted display (HMD) placed on the

head, combined with a wearable computer, (see Figure 1)

it is possible for the user to walk outdoors and the

computer to draw images to enhance their vision. Part (3)

of Figure 2 shows how images from the real world are

combined with computer generated images, using a Sony

Glasstron HMD. This HMD uses a half-silvered mirror as

an optical combiner, presenting the final image to the

user. AR systems allow the user to have “X-ray vision”,

visualising objects which may not be visible to the user in

the real world.

1.2 Why Is Outdoor AR Hard?

Performing outdoor AR research is harder than most other

kinds of virtual environments, with the lack of

lightweight, portable equipment that performs the tasks

Copyright © 2001, Australian Computer Society, Inc. This

paper appeared at the Third Australasian User Interfaces

Conference (AUIC2002), Melbourne, Australia. Conferences in

Research and Practice in Information Technology, Vol. 7. John

Grundy and Paul Calder, Eds. Reproduction for academic, not-

for profit purposes permitted provided this text is included. Figure 1 - Outdoor Tinmith Backpack Computer

desired. Requiring all the hardware to be portable places

many restrictions on the equipment that can be used, as

much of it is too large or cannot run from a battery.

The field of virtual reality (VR) also suffers from the lack

of proper input devices and sub-optimal tracking systems.

Therefore new input devices, interfaces, and trackers are

continuing to be developed in an attempt to solve these

problems. However, many of these devices require fixed

infrastructure and are not useable in mobile outdoor

environments. Two excellent papers - (Azuma 1997) and

(Azuma 1999), explain the problems of working outdoors,

and the various technologies that are currently available.

The problem of tracking and registering virtual images

with the user’s view of the physical world is a main focus

of AR research, as can be seen in many current AR

publications. However, there is little previous work in the

area of user interfaces for controlling AR systems in an

outdoor setting, which is the main focus of this paper.

1.3 Aims of this work

Previous AR and VR systems tend to be focused on the

presentation of information with a standard set of

interaction techniques. The construction of graphical

models by in large is performed external to the virtual

environment. When the construction of the models is in a

virtual environment, this tends to be the manipulation of

pre-existing graphical objects, such as houses, cars, or

tanks. We wish to be able to construct and interact with

the graphical models in the virtual environment at a

deeper level. Furthermore, the construction of these new

models from scratch would be performed outdoors, with

minimal prior knowledge of existing physical structures,

and with a small number of primitive tools.

We desired to implement a user interface and set of

applications that would allow the user to construct new

models, and to do this using natural head and hand

gestures. Therefore, we wish to keep the hands free from

holding input devices if possible.

1.4 Concepts implemented

The user operates the application with the Tinmith-Hand

user interface, using head movement, hand tracking,

pinch gloves, and a menu system to perform the following

object manipulation tasks:

Object selection – the user can point at objects and select

them, placing them into one of several clipboards.

Object transform – perform translate, rotate, and scale

operations, in a variety of different ways.

Create primitives – 3D primitives can be created in the

virtual world, from infinite planes as the most primitive,

to complex graphical models such as a water heater.

Combine primitives – previously constructed and

manipulated primitives may be combined together using

Constructive Solid Geometry (CSG) operations to

produce higher level graphical objects.

The following components are used to implement the user

interface and applications, used to construct large

graphical objects outdoors:

Menu system and pinch gloves – the command interface

to the system through the pinch action of our gloves.

These gloves were custom built to integrate in with the

rest of the system.

Four integrated pointing techniques – the system is

capable of using four interchangeable pointing devices to

supply input, depending on the requirements at the time

and the suitability. The devices are one and two handed

finger tracking, a head orientation eye cursor, and a track

ball mouse.

Image plane interaction techniques – these techniques are

where the objects are manipulated on a 2D plane

perpendicular to the current view direction (Pierce 1997).

By combining pointing with image plane techniques, it is

possible to manipulate objects in a 3D environment,

selecting an appropriate camera angle simply by walking.

Application tailored menus – to support the domain

specific construction application, menu options are added

that tailor the menu system to the domain specific tasks.

CSG operations – users intuitively understand operations

such as carving and combining objects. We have

leveraged this understanding by basing the interactive

construction of complex real world shapes around the use

of CSG operations.

2 Background

2.1 Previous Augmented Reality Systems

Most augmented and virtual reality systems are oriented

toward information presentation, the user wearing a

HMD, moving around the world, and experiencing the

artificial reality. There have been a small number of

systems for outdoor augmented reality such as the MARS

Touring machine (Feiner 1997), NRL BARS system

(Julier 2000), previous UniSA Tinmith navigation

systems such as (Piekarski 1999) and (Thomas 1998), and

UniSA ARquake (Thomas 2000). However, these systems

only allow the user to control the presentation of the

information, and not actually create new information,

especially 3D models.

2.2 Previous Virtual Reality interaction work

There are a number of concepts we have leveraged from

the area of VR interaction, although most of these are

focused on the manipulation of existing objects. As a

result, the construction of new objects from primitive

building blocks is a fruitful area of investigation.

Our system builds on concepts from a number of

researchers, including: Proprioception and the placement

of objects relative to the body in (Mine 1997); The

viewing and manipulations of objects using the Worlds-

in-Miniature (Stoakley 1995) and Voodoo Dolls (Pierce

1999) techniques; Two handed 3D interaction techniques

in (Hinckley 1994) and (Zeleznik 1997); selection and

manipulation techniques like the GoGo arm (Poupyrev

1996) and various others covered in (Bowman 1997).

A menuing system developed at a similar time as ours is

an immersive VR system using Pinch Gloves (FakeSpace

Labs 2001) recently described in (Bowman 2001).

Although a similar concept as ours, it was different in that

it was very much like traditional pull down menus. The

top-level menu items were available on one hand, and the

second level options on the other hand. Using the small

finger it was possible to cycle through options if there

were more than three options. The menus were limited to

a depth of two, and it is not scalable to a large number of

hierarchical commands. Our system is fundamentally

different due to the way the user interacts with the menu.

2.3 Current outdoor capture techniques

There are a number of techniques to construct large

outdoor graphical models. A simple technique to model

an existing building is to measure up and record the

dimensions of an entire building with a tape measure for

example. This is very inefficient and time consuming

because there may be inaccessible features, and the user

must switch from indoors to outdoors at each iteration to

enter the model and then verify its accuracy. Faster

methods like laser scanning or multiple cameras (such as

Façade in (Debevec 1996)) can be used to recover

models, but tend to have large quantities (sometimes

millions) of wasteful facets, and occluded objects will not

be seen by the camera.

3 Outdoor model construction

We propose our novel CSG primitive based approach as a

way of interactively allowing users to build models

outdoors, without the limitations of the other discussed

methods. Although there are other limitations introduced

with this process, they are different from the other two

methods outlined earlier, and so the user now has an extra

choice when deciding how to capture 3D models. The

method is designed to capture reasonably simple objects

to the accuracy of the tracking devices, and the user can

create highly detailed models as they see fit, while

keeping others simple if desired.

3.1 Building construction example

Our first application example for Tinmith-Metro is the

modelling of large outdoor structures. An example of how

to construct an object model is detailed to examine this

modelling technique. This example models a school

building, which is a round shape, with an air conditioning

tower on the roof, and large windows on the side. The

building is neither a box nor a cylinder, and so requires

different primitives for modelling.

System start up – The user dons the wearable computer,

HMD, and pinch gloves. The user then starts Tinmith-

Metro and performs the calibration of the trackers.

Create perimeter walls – The overall top down outline of

a building must first be specified. In the example

building, there are 32 facets, but the user will only define

the outline of the building with 10 planes for simplicity.

The building is approximately a cylinder, but not similar

enough to use the real cylinder primitive. To create the

outline, the user creates infinite planes to mark each wall.

Each plane is created by the following: 1) the user

positions themselves to look down the edge of a building

wall, at any convenient distance, 2) the user places the

eye cursor along the wall edge, 3) the user selecting the

menu option with the gloves to create a right facing wall,

and 4) the right facing wall (an infinite plane) is added to

the virtual world intersecting the eye cursor and

perpendicular to the image plane. This wall cuts the entire

infinite world in half, in the same way as the real wall

does, with the left being inside the building, and the right

being outside. By walking around the building and

marking each plane, the user is carving away sections of

the infinite space and defining the volume of the building.

Eventually, when the user has completely circled the

building, the perimeter of the volume is no longer infinite,

and is now closed. The final result is a 2D bounded

perimeter as shown from the top down view in (1) of

Figure 2. This figure shows the very long planes that

created the bounding volume.

Create floor and roof – To complete the first solid shape

of the model, the 2D perimeter is constrained with a roof

and floor. These are created by the user looking toward

the centre of the building and creating a default floor at

zero metres and a default roof at three metres.

Create solid object – The infinite planes are all separate

and do not currently form a proper solid object. To form a

solid object, the CSG intersection operation is selected

from the Tinmith-Hand menu with the pinch glove. Once

the operation has been initiated, the renderer draws a

preview of current model. The user interactively corrects

the height of the roof by lifting or lowering it to match the

correct height of the building; and this is verified by using

the registration of the virtual object against the physical

building. When the roof is in the correct position, the

Figure 2 - Tinmith-Metro Demonstrating Various Stages of Construction of 3D School Model

(1) Satellite view of infinite planes defining building volume (2) Solid round shaped building, (3) Immersive HMD shot of school, facing south

intersection operation is committed with another glove

menu selection. The model of the building is now at the

stage depicted in (2) and (3) of Figure 2.

Create air conditioner tower – The air conditioning tower

may be added in a number of ways. One method uses a

default cylinder primitive, scaled and moved into

position. A second method is to use the infinite planes

technique to create a completely new shape. In this

example, the user will use the infinite planes technique

and the same CSG intersect operation, but this time the

tower roof is higher, with a reduced width.

Combine two objects together – Currently, portions of the

air conditioner tower exist inside the building object. The

tower contains internal facets that are not visible and

wastes graphics resources. Using the CSG union

operation, the system can merge the tower and building

objects into one object, removing the internal facets and

simplifying the model, producing a single object.

Create windows – The next task for the user is to add

coloured depressed windows into the building, which is

done by carving into the building. First the user creates a

box shaped object to use as a tool, whose profile matches

that of the window, and has a depth of at least the

window’s depression. The box object tool may be created

using a prefabricated model or constructed by the user.

The user positions themselves to be able to see the

window easily, and the CSG difference operation is

selected. Using the gloves, the user pushes the box object

tool into the building, in the same way that a cookie cutter

is used to remove portions of dough. The box object tool

is pushed into the wall until it is the same depth as the

window depression. The facets cut into the building are

coloured blue like the window, and are also indented into

the shape, they are not just surface modifications.

3.1.1 Results

The user has just created a model of a building that is

approximately round, along with an air conditioning

machinery tower, and carved in windows, shown as a ray

traced image in Figure 3. The user may continue to model

the building to any level of complexity that they desire,

depending on the requirements for the model.

The accuracy of the objects created with this system is

largely dependent on the tracking hardware used, and the

amount of care taken by the user to accurately enter the

information. For position tracking, the Trimble Ag132 has

an accuracy around 0.5 metres. For orientation tracking,

the IS-300 has a resolution of 1° static and 3° dynamic

accuracy, with models measured as close to the building

as possible (without degrading the GPS) are the most

desirable.

3.2 Street furniture example

A second application example for Tinmith-Metro is to

position models of typical community infrastructure,

“street furniture”, such as park benches, rubbish

containers, and street lamps, located at our university

campus. In this second example, the user operates a

customised menu structure in Tinmith-Metro to position

prefabricated models of smaller street furniture items.

These models were created using NewTek LightWave

and converted into the custom Tinmith file format.

Create grass area – The user creates a grass area by using

the infinite planes technique to mark out a perimeter. The

area the user is marking is between numerous campus

buildings, and so the user approximates the area with

several planes. A special “create grass” menu operation is

selected, and then floor and roof are both created at

default heights and intersected with the perimeter. The

resulting object is a grass slab that is 5 cm thick. The

purpose of the grass is to supply a background for the

objects, and so accuracy or shape is not a concern.

Place down objects – The user moves around the area,

standing near the real world objects. The user has

previously modelled the required objects such as lamps,

rubbish bins, benches, and trees on a desktop system, at

the desired accuracy. By using the glove and menu, the

object to place down is selected and then instantiated into

the modelling environment.

Placement defaults and adjustment - By default, an object

is placed one metre in front of the user, and oriented away

from the image plane. This allows the user to immediately

place an object at the correct orientation and position. The

user may then manipulate the object if desired. Image

plane techniques are inappropriate for the rotation of an

object about the Z (heading) axis when in immersive

view; therefore the top down map is used instead. If an

object is not the correct size, it can be easily scaled to size

using two handed manipulation techniques.

3.2.1 Results

After the previous process is complete, the user has

captured a model depicting the grass area, with various

Figure 3 - Final rendered output of 3D school building model,

captured using new techniques demonstrated in Tinmith-Metro

Figure 4 - Outdoor Furniture Placement Screenshot

items of street furniture laid out on top. This model can be

viewed immersively or with orbital view in the system (as

in Figure 4), or displayed on a separate VR or desktop

system indoors.

4 Glove based menu system

The menuing system of Tinmith-Hand provides the user

interface to a fully functional 3D modelling system,

supporting object hierarchies, CSG, and editable

transformations, without the use of a keyboard or

traditional mouse. Although the system has a trackball

attached, it is preferable to avoid using this device, as the

hands are used for the object manipulation tasks. We

found that while the trackball was functional and used to

start the system up from X Windows, it was more difficult

and less intuitive to use during modelling.

The menu options, shown in Figure 5, are presented in a

transparent green dialog box at the bottom of the display,

which can be repositioned if desired. We used

transparency, allowing the user to see through the menu

in order to reduce visual clutter caused by the menu

boxes. The menu colours and transparency are

dynamically changeable.

Each menu option is assigned to a finger on the gloves.

To select an option, the user touches the matching

fingertip with the thumb tip. For example the CSG option

would be selected if the ring finger (LF3) and thumb of

the left hand were pressed together. To indicate a

selection, the user must hold the press for a short period

of time to eliminate key bounce problems or accidental

brushing of the glove. When the press is complete, the

system beeps and then moves to the selected node in the

menu hierarchy. The system then can execute an action at

this node if required. In addition, Tinmith-Hand may

present a new set of options or return back to the top level

of the menu structure if the operation is complete. By

pressing any finger on the palm of the glove, the menu

returns back to the top level.

The menus do not float in the 3D world like other VR

menus such as (Bowman 2001) and (Mine 1997), since

we feel that these menu options should always be visible

during the graphical object creation task. The menus are

fixed to the screen, and designed to aid and focus the user

on the task of graphical object construction.

Currently, the menu contains over 100 nodes arranged

into a hierarchy, with a maximum of 8 choices per level.

Some operations in the system require multiple steps to

complete, and hence go deeper into the menu at each step,

but most can be started within 2 clicks of the root menu.

The 8 choices per level could potentially be expanded

with multi-modal interfaces employing both gestures and

voice recognition.

4.1 Tinmith-Glove

Wearable computers supporting interactive augmented

reality applications require input devices to issue

commands to the computer, and 3D tracking to

manipulate graphical objects. Tinmith-Glove is our

custom built, low cost set of pinch gloves to support

command entry and hand tracking. We present the design

and implementation issues for our gloves to help others

construct inexpensive wearable input technology.

4.2 Current technology

Currently, there are a small number of products on the

market that allow users to interact with virtual

environments. Each of these have different uses, and

many have a cost measured in thousands of dollars per

unit.

Two gloves were considered before the start of this

project, as they performed similar operations to those

desired. The FakeSpace PinchGlove (FakeSpace Labs

2001) contains electrical sensors at each fingertip to

measure touching, while the VTi CyberGlove (Virtual

Technologies 2001) uses bend sensors to measure finger

positions, designed mostly for motion capture. For our

application, finger tip to thumb tip touching detection is

required, and so the PinchGlove with conductive sensors

would be the most appropriate.

The Tinmith-Glove was designed to allow the use of

glove based input technology to support virtual and

augmented reality applications. These gloves would

perform similar pinching tasks as the PinchGlove, while

at the same time allow us to customise the placement of

the sensors, add new ones to increase the functionality,

and have a low price that makes the technology available

to anyone. Our research environment requires a flexible

hardware implementation that makes changes simple.

4.3 Construction

The glove is based on a typical gardening glove that

loosely fits the hand. A correct fit is important; the glove

may become damaged during removal if it is too tight.

Detection of finger presses is by the completion of an

electric circuit; a conductive surface is required on the

tips of the thumbs and fingers. Special flexible metallic

tape was acquired from a hardware store, which is

normally used to adhere reflective insulation inside the

roofs of houses. This tape is conductive on one side and

sticky on the other. Pieces were cut out and placed over

the fingertips. In the first version of the glove, the tape

was wrapped all the way around the fingertips, but on the

 LF4 LF3 LF2 LF1 RF1 RF2 RF3 RF4

Figure 5 - Tinmith-Gloves with metal pads, tracking targets, and top

level menu mappings used with the Tinmith-Hand user interface

second design, only the places where pressure is applied

had metallic surfaces. This was done to minimise the

amount of area that was conductive, preventing problems

where fingers would falsely contact each other.

Wires were placed onto the edge of the metal pads, with

another layer of tape placed on top to secure it. The tape

layers were fused together by running a hot soldering iron

over the surface, melting the sticky backing and bonding

the metallic layers together. These wires were run to an 8-

pin connector on the wrist, with hot glue securing the

wires and connector to the glove. During extensive

outdoor use there have been no breakages so far.

Cables are used to connect the gloves up to a processing

box, which interfaces to the laptop via a serial port. A

Parallax (Parallax 2001) Basic Stamp BS2

microcontroller performs this processing. The BS2

features 16 I/O pins, a serial port, EEPROM, and voltage

regulator. Hardware development time is low because the

MCU comes fully integrated and only requires a power

supply to start using it. A simple interface prototype

board was built in order to connect the glove cables up to

MCU, with some resistors added to protect against short

circuits.

The control program is written in a special high level

language for the BS2. This language allows the developer

to write programs in a Basic-like language to use the I/O

pins and the serial port. The control loop applies voltage

to each finger one at a time, and polls for which pad the

voltage is detected on (thumb, palm, or none). If this

value is different from the last check, then a single byte is

sent to the serial port indicating that the finger has

changed state, along with the new location of the finger.

This polling process is performed 30 times per second for

each finger, ensuring that quick presses are accurately

captured.

In the laptop, the Tinmith system reads the serial message

and then converts it into an internal event that is made

available to other objects. These events are similar to

those emitted by a keyboard, and so Tinmith code

previous written for desktop devices can be modified

easily to support the Tinmith-Glove. Tinmith performs

debouncing to remove small false contacts that are

generated as the fingers and thumbs are pressed together.

Currently, the glove supports both finger and palm

pressing, although others could be added easily. We

envisage a variety of different user gestures. For example,

in the ARquake system (Thomas 2000), which used a

plastic gun as a prop, it would be possible to replace this

with a gun or fist gesture, thereby alleviating the need to

carry any extra hardware.

4.4 3D hand tracking

Hand tracking is the traditional method for 3D object

manipulation in immersive virtual environment, but this

tracking is customarily expensive and non-portable. With

the advent of fast processors and inexpensive video

cameras, we have used pattern recognition to track

fiducial markers. We utilised the freely available

ARtoolkit system (Kato 1999), which is a set of generic

computer vision libraries. Using a single camera, the

ARtoolkit library is able to resolve a full six-degree of

freedom tracking solution for multiple targets present in

the video frame. The fiducial markers mounted on the

thumbs are simple 2x2 cm cardboard squares with a black

outline and a pattern in the centre.

With our P2-450 laptop and USB camera mounted on the

head, we achieve capture rates of around 5-10 fps with

only 20% CPU usage, so the system is feasible on most

modern machines. The quality of the tracking was also

excellent under natural light, with minimal false

detections caused by the environment. While the overall

position of the tracking is good, the orientation values are

quite inaccurate (jittering over 10°-20° angles), and hence

not a complete solution, but one which is workable for

simple cases.

The placement of the fiducial markers on the hands is

important as we need to ensure they are visible at all

times to the camera. We first thought to place the targets

on the back of the user’s hand, but we quickly realised

that being large, the hands easily fill the field of view of

the camera. It was decided that fingers would allow finer

motor control and more movement. The ends of the index

fingers were dismissed as they moved too much during

the selection of the menu option with the index finger and

thumb. We noticed that the thumb did not move much

during a pinching gesture however. People tended to

bring their fingers down to meet their thumb as opposed

to bringing the thumb up to meet the fingers. As a result,

the targets were placed on the top of the thumb. As

another option, the index finger could be used for one

handed cursor movements, with the cursor attached to the

dominant hand index finger, and the selection of the

menus with the other.

5 Pointing and selection techniques

With Tinmith-Hand, the user has a choice of four input

devices for pointing and selecting. Some are 2D, like the

trackball and eye cursor, while the finger tracking is 3D

based. The user chooses whichever device is appropriate

at the time for the particular control or selection task.

Traditional desktop applications only use one device, or

merge the devices to all be the same.

5.1 Hand based finger tracking

Tinmith-Hand is designed to support applications that

interact with graphical objects and enter spatial

information. We chose hand gestures to be the main

interaction method for the user interface as they seemed

to fit well with the natural operations of the CSG

modelling system.

Figure 6 - (1) 3D Cursor Mapped On To Hand

(2) Rear view of glove showing metal pads and wiring

Given the location of the hands from the markers, the

system overlays registered 3D axes, as shown in (1) of

Figure 6. At the same time, a 2D flat cursor (similar to a

mouse cursor) is overlaid on top. The cursor is placed in a

desired location by movement of the user’s hand. When

the user activates selection using the menu and gloves, a

ray is fired into the scene from the 2D cursor, and the first

object hit is selected. Although 3D coordinates for the

hands are available, no 3D based interaction techniques

have been implemented at present.

5.2 Eye cursor

The eye cursor is fixed to the centre of the display, and is

controlled by the user rotating their head to point to

different objects in the world. We have found the eye

cursor to be very useful during the construction mode. In

particular for when looking down a wall, it is used to

specify the direction of the infinite plane, being coplanar

with the wall. Objects may also be selected with this

mode, the user aims their head at the object, and the ray

fired is tested for intersecting objects.

5.3 Handheld trackball

The handheld trackball device has been logically attached

to a 2D cursor. The trackball is operated in a traditional

manner for cursor movement and selection, and is also

required to start the software from the X window

manager. We have found the trackball useful for

debugging purposes, but it prevents the user from using

the pinch gloves, and therefore the least effective.

5.4 Object selection

When a user performs a pick operation on a graphical

object, the system determines the closest polygon under

the cursor. When a polygon is selected, the simplest

object is chosen, but the user can traverse up the hierarchy

to select more of the model if desired. Every polygon and

object in the scene exists in the world model hierarchy,

many objects are also children of other objects, and are

represented using a file system notation. For example, the

hand of the human avatar stored in the scene graph is

represented as /human/left_arm/lower/wrist-/hand.

5.5 Selection buffers

For CSG operations, users are required to select multiple

objects, operate on them independently, and then combine

them together to produce a final object. One solution is to

repeatedly select and deselect objects as required, but

selection is tedious and error prone. As a result, rather

than having the ability to select just one object and

operate on it, the user operates on collections of objects in

the selection buffers, which are very similar to traditional

clipboards. In any particular selection buffer, the user

may place multiple selected objects. The user is able to

switch between selection buffers and put different objects

into different buffers. CSG operations are performed

between two selection buffers at a time. For example, a

user may intersect all the planes in buffers A and B while

moving only the planes in buffer B, the result going into

A. Later, the user can place some different planes into

buffer C, rotate them, and then intersect them with the

previously existing result (this is how the construction of

the building was performed in the example).

5.6 Object transform techniques

Tinmith-Hand supports a number of image plane

techniques for manipulating (move, rotate, and scale)

objects in the environment. These image plane techniques

require one or two input cursors via the four input devices

(one and two handed finger tracking, eye cursor, or hand

trackball) and a selection buffer to operate on. The input

device and the selection buffer are selected by the user via

the menus. It is important to realise that these operations

are only 2D based, and so operations are performed only

in a direction perpendicular to the camera direction.

6 CSG modelling system

At the centre of the modelling system is the CSG engine.

CSG allows the construction of complex 3D graphical

shapes using only a small number of primitives. It uses

the same CSG concepts from graphical software like ray

tracers (such as POV-Ray (POV-Team 2000)) that

traditionally support only mathematically simple objects

such as infinite planes, spheres, and objects that can be

described by an equation. This limits the complexity of

models that are possible, as things like triangles are not

possible to define with a surface equation. As a result, by

combining these primitives together using CSG, it is

possible to describe new ones.

Each primitive has an outside and inside, and can be

tested if an object, or part of it, is inside or outside

another object. The three fundamental CSG operations

(based on set theory) are shown in Figure 7.

As our fundamental primitive, planes are infinite objects

that have a front and back face, (defined by the surface

normal) and the space behind the plane is defined to be

‘inside’. Hence, if 6 planes, all perpendicular to each

other, are intersected, they form a closed 3D box with an

‘inside’.

Complex shapes may be built up using infinite planes, as

was shown in the house example. The example only dealt

with the case of a convex shape however. A concave

shape is one in which there are holes or other indents in

the surface. Using a set of infinite planes, it is not possible

to model a concave shape such as a T, L, or donut shaped

building (as shown in Figure 8) using a single CSG

operation.

A concave building can be created by breaking the

problem down into stages. The following is an example

showing how to construct an L shaped building:

1. Create a bounding box representing the entire space

used by the building. Use infinite planes and CSG

Pyramid Sphere Union Intersection Difference

Figure 7 - CSG Primitive Operations

intersect to produce this box, and store it in a

selection buffer.

2. Create a second box representing the space used by

the hole we want to remove. Use the same methods

as previous, and store in a different selection buffer.

3. Activate the CSG difference between the two buffers

created previously. The CSG engine will show the

resulting object and allow the user to fine tune the

locations of the objects until everything is correct.

The user commits the result, and the L shaped

building is now modeled.

This process can be repeated as many times as necessary

to carve out other parts of the building such as windows,

tunnels, garages, bridges, and donuts.

6.1 CSG engine implementation

In order to support applications such as Tinmith-Metro, a

complete CSG engine was implemented. This engine

takes in a series of object meshes from the object

hierarchy, and calculates the result in real time to allow

the user to interactively view and modify the CSG

operations.

As an example, given two solid cubes A and B, they will

each contain 6 facets, and be a convex shape. A

difference operation A – B (carving one away from the

other) requires the objects be subdivided, with each

polygon being used to cut every other polygon in half.

This produces a complex mesh that is then processed,

throwing out facets that do not fit the set operation. The

subdivision is then reversed to join back facets that were

not altered, and the result is ready to be rendered.

This process is computationally expensive, as whenever

one of the source objects moves, the models need to be

newly subdivided, processed, and simplified. Given

simple cubes, cylinders, and other objects, the system

runs in real time at interactive frame rates. However,

given two complex spheres with hundreds of varying

facets each, this process can slow down to the point where

it is unusable.

There are many methods for resolving CSG operations,

using rendering hardware, ray-tracing techniques, or

voxels, but the required hardware cannot be used

outdoors, does not run at real time rates, or does not

preserve the original facet mesh structure.

7 Tinmith system

The Tinmith-Hand interface and Tinmith-Metro

application are part of a larger AR system, Tinmith-evo5.

The Tinmith system is built up of both hardware and

software, using off the shelf products and custom built

components for our research, as some of our needs can

not be met with existing technology.

7.1 Hardware

The wearable computer system as shown in Figure 1 is

based on a Gateway Solo P2-450 laptop (64 mb RAM,

ATI Rage OpenGL) mounted on a hiking backpack. An

Intersense IS-300 hybrid tracker performs orientation

sensing. Position information is gained from a Trimble

Ag132 GPS, with an accuracy of 50 cm, varying with

conditions. The display is a Sony Glasstron PLM-700e

monocular SVGA display. A large 12V battery powers

the various trackers, as well as the small LCD television

on the back for debugging and spectators to view. A

SuperCam WonderEye USB video camera is used to

provide images for the hand tracking system.

The laptop runs RedHat Linux 7.0 with kernel 2.4 as its

operating system, including the standard GNU

development environment. XFree86 v3.3.6 is used for

graphics, as it does hardware accelerated OpenGL using

Utah-GLX. The performance of the older ATI Rage

chipset is adequate for our current needs. Currently, we

use USB for our camera as there is no other way to

capture video with a Linux laptop.

7.2 Tinmith-evo5 software architecture

The menus and interaction techniques are only the

application level interfaces, those that communicate

directly with the user. To implement a system of this

magnitude, a modular architecture with an appropriate

framework must be provided.

Although sharing the same name as its predecessors

(Piekarski 1999, Thomas 1998), Tinmith-evo5 is a

completely new design and implementation, written in

C++ to maximise speed and efficiency. The complete

details of the system are not presented in this paper, but

basically, the overall goal is to process data from input

devices, make changes to the internal state of the system,

and then render images to the user’s display. At the same

time, speed and practicality of implementation were

major goals, as we wanted to use the system in real world

applications. See (Piekarski 2001) for more information.

Input devices and trackers are firstly abstracted away into

objects, which are then made available for other objects to

read in and process. When new tracker information

arrives, the class notifies listening objects using a callback

mechanism, which then allows the listener to recalculate

its internal values based on this new information. The

changes are propagated throughout the system until all

objects have been updated, and then the display is

rendered when the system is idle. This flow of data

through the system allows us to write small component

based objects which handle one task, and then glue them

all together. By default, communication is done using fast

function calls in a single process, and there is no

threading, shared memory, network, system call, or RPC

overhead. As a result, the propagation of values through

the system has little effect on the CPU, leaving resources

available for rendering and processing tracker updates. If

desired however, network serialisation objects can be

plugged in to distribute values over a network, but the

default is to run locally, maximising performance.

Figure 8 - Convex Trapezoid, and Concave T, L, and Donut Shapes

A key feature of the system is the object repository, which

is a place that objects can be stored to allow other objects

to access them easily. A standard way of retrieving

objects is making all objects accessible through many

global pointers, but it is well known that this method

becomes unworkable for hundreds of objects connected

together in the system. Our solution is the creation of an

object storage system that stores pointers to all the objects

in the system, as they are created. Each class that can be

stored implements methods to perform serialisation and

callbacks, using special preprocessor macros and code

generators. To reference an object in the repository, a

string resembling a file system path name is used. The

forward slash is used as a delimiter, and this allows us to

organise the classes into categories in a tree structure.

Other objects wanting a reference to an object simply call

a method that retrieves the object pointer and returns it.

Our store is as efficient as a global variable as it is mostly

accessed only at object creation, but it is also a dynamic

run time system that can be changed as the system is

running.

The object repository contains the menu system, the

tracking system definition, the graphical objects, and all

other system objects. At system start up, the object

repository firstly reads through the physical disk file

system (which matches the object storage paths) and

reads in object definition files. These files contain start up

values for various classes, and are created into

instantiated objects, which are used to configure the

environment for the rest of the system. Once completed,

other portions of the system can then execute to configure

the particular application and task, creating the necessary

objects. Since each object may be serialised, we may

snapshot the state of the system and reload it, or distribute

it over a network.

The menu state objects are created based on the

definitions contained on the disk, which are then read in

by the menu object to control the state of the application.

Since the menu is decoupled from the application, a

translation layer is used to convert actions into method

calls. Our trackers are stored in the system, and by using a

feature called an object symbolic link, it is possible to

switch the objects supplying tracker data to other objects

completely transparently. Using this, it is possible to

implement a patch board of tracking devices and switch

them for a variety of tasks. We believe that the ability to

transparently change input devices and coordinate

systems is a key to making the interaction techniques of

Tinmith-Hand feasible.

The rendering system also uses the object repository, and

is a full hierarchical modelling system similar to SGI’s

Inventor, supporting a scene graph, as well as

transformation nodes controlling the movement of all the

child objects. Each object in the scene graph is stored in

the object repository, allowing polygons and objects to be

easily referenced using path names by other code, so they

can be controlled. Also, a tracking device may be attached

to any node in the scene graph, and the device will

automatically apply its movement to the node via

callbacks, moving all children. Apart from rendering

objects, we also use the hierarchical renderer to resolve

tracker data so that it can be rendered accurately. The user

is modeled as a human 2 metres tall, with 15 separately

movable parts, and we attach our trackers to this model.

The ARtoolkit camera is modelled relative to the head of

the body, and by traversing through the scene graph we

can determine the targets relative to world or head

coordinates easily.

Another use of this human model would be to implement

a GoGo arm using simple orientation sensors. Imagine

attaching orientation trackers (such as the TCM2) to the

upper and lower portions of the user’s arm, the system

would then apply the tracker’s orientations to the shoulder

and elbow joints of the human model. From these angles,

and the known length of the user’s upper and lower arm,

the system would be able to determine the location of the

base of the user’s hand.

It is important to understand that the architecture used for

this system was originally designed to support AR

applications, although it could be used to support a wide

variety of systems where data flow and objects are used,

such as: VR systems, 2D GUI applications, and constraint

systems. There is a large amount of code present in the

system to handle 3D rendering, user interface components

such as transparent dialog boxes, and transformations for

the Earth’s various coordinate systems.

8 Conclusion

This paper has introduced the Tinmith family of systems,

designed to allow complex outdoor user interaction in

augmented reality environments. Using the Tinmith-evo5

software architecture, we have implemented the Tinmith-

Hand AR user interface, and used this as a foundation for

the Tinmith-Metro city modelling and capture application.

Using the techniques described in this paper, we can

control the real-time CSG engine and produce models of

arbitrary complexity easily, and verify them as they are

being created. These models can then be saved and

viewed later by others on desktop or virtual reality

systems.

The ability to capture models outdoors has a wide number

of uses, which we are only now beginning to explore with

our system. These have applications for a variety of

different areas, such as the GIS, environmental,

surveying, and architectural fields.

9 Acknowledgments

The authors would like to especially acknowledge the

work of Arron and Spishek Piekarski, who both helped in

the construction and design of the glove and HMD.

Thanks also to the Division of ITEE and Defence Science

Technology Organisation (DSTO).

10 References

Azuma, R. (1997): A Survey of Augmented Reality.

Presence: Teleoperators and Virtual Environments, Vol.

6, No. 4, 1997.

Azuma, R., Hoff, B., Neely, H., and Sarfaty, R. (1999): A

Motion-Stablized Outdoor Augmented Reality System.

In IEEE Virtual Reality, pp 252-259, Houston, Tx, 1999

Bowman, D. A. and Hodges, L. F. (1997): An Evaluation

of Techniques for Grabbing and Manipulating Remote

Objects in Immersive Virtual Environments. In 1997
Symposium on Interactive 3D Graphics, pp 35-38,

Providence, RI, Apr 1997.

Bowman, D. A. and Wingrave, C. A. (2001): Design and

Evaluation of Menu Systems for Immersive Virtual

Environments. In IEEE Virtual Reality 2001, pp 149-

156, Yokohama, Japan, Mar 2001.

Debevec, P. E., Taylor, C. J., and Malik, J. (1996):

Modeling and Rendering Architecture from

Photographs: A hybrid geometry- and image-based

approach. In 23rd Annual Conference on Computer

Graphics, pp 11-20, New Orleans, LA, Aug 1996.

FakeSpace Labs (2001): Pinch Gloves. URL -

www.fakespacelabs.com/products/pinch.html

Feiner, S., MacIntyre, B., and Hollerer, T. (1997): A

Touring Machine: Prototyping 3D Mobile Augmented

Reality Systems for Exploring the Urban Environment.

In 1st Int'l Symposium on Wearable Computers, pp 74-

81, Cambridge, Ma, Oct 1997.

Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F.

(1994): A Survey of Design Issues in Spatial Input. In

7th Int'l Symposium on User Interface Software

Technology, pp 213-222, Marina del Rey, Ca, Nov

1994.

Julier, S., Lanzagorta, M., Baillot, Y., Rosenblum, L.,

Feiner, S., and Hollerer, T. (2000): Information

Filtering for Mobile Augmented Reality. In 3rd IEEE

and ACM International Symposium on Augmented

Reality, pp 1-10, Munich, Germany, Oct 2000.

Kato, H. and Billinghurst, M. (1999): Marker Tracking

and HMD Calibration for a Video-based Augmented

Reality Conferencing System. In 2nd IEEE and ACM

International Workshop on Augmented Reality, pp 85-

94, San Francisco, Ca, Oct 1999.

Mine, M., Brooks, F. P., and Sequin, C. H. (1997):

Moving Objects In Space: Exploiting Proprioception In

Virtual-Environment Interaction. In ACM SIGGRAPH

1997, pp 19-26, Los Angeles, Ca, Aug 1997.

Parallax (2001): Basic Stamp BS2. URL -

www.parallaxinc.com

Piekarski, W., Gunther, B., and Thomas, B. (1999):

Integrating Virtual and Augmented Realities in an

Outdoor Application. In 2nd Int'l Workshop on

Augmented Reality, pp 45-54, San Francisco, Ca, Oct

1999.

Piekarski, W. and Thomas, B. (2001): Tinmith-evo5 - An

Architecture for Supporting Mobile Augmented Reality

Environments. In 2nd Int'l Symposium on Augmented

Reality, New York, NY, Oct 2001.

Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik,

R., and Mine, M. (1997): Image Plane Interaction

Techniques in 3D Immersive Environments. In 1997

Symposium on Interactive 3D Graphics, pp 39-43,

Providence, RI, Apr 1997.

Pierce, J. S., Steams, B. C., and Pausch, R. (1999):

Voodoo Dolls: Seamless Interaction at Multiple Scales

in Virtual Environments. In 1999 ACM Symposium on
Interactive 3D Graphics, pp 141-145, Atlanta, Ga, Apr

1999.

Poupyrev, I., Billinghurst, M., Weghorst, S., and

Ichikawa, T. (1996): The Go-Go Interaction Technique:

Non-linear Mapping for Direct Manipulation in VR. In

9th Int'l Symposium on User Interface Software
Technology, pp 79-80, Seattle, WA, Nov 1996.

POV-Team (2000): The Persistence Of Vision Raytracer.

URL - http://www.povray.org

Stoakley, R., Conway, M. J., and Pausch, R. (1995):

Virtual Reality on a WIM: Interactive Worlds in

Miniature. In Conference on Human Factors in

Computing Systems - CHI95, pp 265-272, Denver, Co,

May 1995.

Thomas, B., Close, B., Donoghue, J., Squires, J., De

Bondi, P., Morris, M., and Piekarski, W. (2000):

ARQuake: An Outdoor/Indoor Augmented Reality First

Person Application. In 4th Int'l Symposium on

Wearable Computers, pp 139-146, Atlanta, Ga, USA,

Oct 2000.

Thomas, B. H., Demczuk, V., Piekarski, W., Hepworth,

D., and Gunther, D. (1998): A Wearable Computer

System With Augmented Reality to Support Terrestrial

Navigation. In 2nd Int'l Symposium on Wearable

Computers, pp 168-171, Pittsburg, Pa, Oct 1998.

Virtual Technologies (2001): CyberGlove. URL -

www.virtex.com/products/hw_products/cyberglove.html

Zeleznik, R. C., Forsberg, A. S., and Strauss, P. S. (1997):

Two Pointer Input For 3D Interaction. In 1997
Symposium on Interactive 3D Graphics, pp 115-120,

Providence, RI, Apr 1997.

