
Tinmith-Metro: New Outdoor Techniques for Creating City

Models with an Augmented Reality Wearable Computer

Wayne Piekarski and Bruce H. Thomas

Wearable Computer Laboratory

School of Computer and Information Science

University of South Australia

Mawson Lakes, SA, 5095, Australia

{wayne, thomas}@cs.unisa.edu.au

Abstract

This paper presents new techniques for capturing and

viewing on site 3D graphical models for large outdoor

objects. Using an augmented reality wearable computer,
we have developed a software system, known as Tinmith-

Metro. Tinmith-Metro allows users to control a 3D con-

structive solid geometry modeller for building graphical

objects of large physical artefacts, for example buildings,

in the physical world. The 3D modeller is driven by a new
user interface known as Tinmith-Hand, which allows the

user to control the modeller using a set of pinch gloves and

hand tracking. These techniques allow user to supply their

AR renderers with models that would previously have to be

captured with manual, time-consuming, and/or expensive

methods.

Keywords: augmented reality, 3D modelling, construc-

tive solid geometry, mobile user interfaces

1. Introduction

This paper presents a new methodology for capturing

city models and a software implementation of this method-

ology, known as Tinmith-Metro. This technique supports

the modelling of relatively complex buildings and other

large physical structures (rendered in Figure 1 and photo-

graphed in (3) of Figure 2), and the positioning of prefabri-

cated graphical models of typical community infrastructure

and city objects. The user performs these tasks interac-

tively while walking around outdoors with the aid of an

augmented reality (AR) wearable computer. The modeller

uses constructive solid geometry (CSG) related techniques

to allow the user to build up complex shapes from simpler

primitives. The Tinmith-Metro system combines the CSG

modeller with a user interface, known as Tinmith-Hand,

which supports interaction techniques based on pinch

gloves and vision based hand tracking.

This work was motivated while exploring AR methods

and systems for use in an outdoor environment. Those in-

vestigations have required us to construct the necessary 3D

models indoors to allow the AR systems to render appro-

priate immersive information. We believe it is possible to

streamline this entry process by constructing these models

interactively outdoors, making the process more accurate

and efficient. Currently, the authors know of no previous

work that allows interactive 3D outdoor AR modelling.

The remainder of this introduction discusses the aims of

this research and an overview of the newly implemented

technologies. The relevant previous work on which this

system is based is then presented; followed by a discussion

of currently available methods for outdoor model capture.

Two application domains are examined with detailed ex-

amples, showing our techniques in action in real life situa-

tions to demonstrate their power and flexibility. As part of

the example, Tinmith-Hand, the menu and glove user inter-

face is discussed, showing the user interaction for model

construction. The CSG modelling system is described, and

how it is used to construct the higher level shapes. The

Tinmith software and hardware architecture, which forms

the base for Tinmith-Metro, is also explained. Finally, a

number of other application domains are examined.

In this paper, we do not focus on the problems of

tracking or registration, but concentrate on the techniques

for users to build large outdoor 3D graphical models. We

present solutions that work within the technology available

today to implement our ideas.

Figure 1 - Final rendered output of 3D school building model,
captured using new techniques demonstrated in Tinmith-Metro

Goals

The main goal of this work is to produce new tech-

niques for constructing large 3D graphical models of ex-

isting structures, without external information such as

maps, images, or designs. Our aim is for an intuitive meth-

odology; one that can be used to construct models in a way

that seems natural. Using CSG operations, we leverage a

person’s common understanding of combining and carving

solid shapes in the physical world, and their ability to ap-

ply this understanding to the construction of objects in a

virtual environment. We believe the user’s hands is the

most appropriate vehicle to communicate with the com-

puter. Finally, augmented reality allows a user to visually

verify the quality of the models at the time of creation.

New technology implemented

The new methodologies for the construction of outdoor

buildings are implemented into a complete city modelling

demonstration system, Tinmith-Metro. The following are

the major technologies:

CSG operations to create 3D objects – Using the CSG

engine and Tinmith-Hand, the user can create large 3D

objects (such as buildings) from simple primitives (such as

infinite planes) while walking outdoors. By combining

these operations, the user may produce more complicated

shapes and visually verify the results interactively.

Placement of 3D prefabricated objects – By loading

pre-fabricated models into the system (such as cars, street

lights, and trees), the user can position graphical objects in

an outdoor environment interactively.

Tinmith-Hand menu system – Using a set of custom-

built pinch gloves, the user may execute system commands

by navigating special menus linked to finger press events

on the gloves.

Tinmith-Hand finger tracking – Through the use of vi-

sion based tracking techniques, the system tracks the posi-

tion and orientation of markers placed on the user’s hands.

This tracking forms the basis for one and two handed in-

teractions.

Tinmith-Hand multiple input devices – The user has a

choice of four input devices, one handed tracking, two

handed tracking, head tracked eye cursor, and a traditional

hand-held track ball. These input devices provide the user

with the means to perform 3D manipulation of graphical

objects through the use of image plane techniques [13].

Specialised visualisation techniques – In addition to the

immersive AR display, the system supports the following

external camera views: orbital view, 2D top down rotating

map view, as well as other body relative camera angles.

Tinmith-evo5 augmented reality system – The Tinmith-

evo5 augmented reality system is the foundation for all the

higher-level domain specific applications. Tinmith-evo5

provides support for abstracting tracker devices, object

communications, and a hierarchical 3D object renderer.

Earth coordinate systems – Tinmith-evo5 internally

supports the use of multiple Earth based coordinate sys-

tems, and translations between them.

2. Related work

To place our work in the context of other researchers, a

background of mobile outdoor augmented reality projects

is presented. Related investigations on interactive model

capturing systems are then described. Finally, a number of

automated modelling techniques are discussed and defi-

ciencies noted.

Previous mobile AR work

Currently, most AR (and even VR) systems focus on is-

sues of improving information presentation. The user

walks around the world (either indoors or outdoors),

viewing the world with virtual objects superimposed. In an

outdoor setting, a number of systems have been imple-

mented which perform these tasks, such as the Columbia

MARS system [5], the NRL BARS system [9], and previ-

ous UniSA Tinmith systems [12, 18]. Although most of

these systems are also able to be connected and share in-

formation using wireless networks, a key point is these

systems only allow the user to control how the information

is presented. They are not designed to enter large quantities

of new graphical information, apart from marking simple

points.

Previous interactive capture systems

There are a number of techniques currently available to

allow users to interactively construct models of objects.

Two interesting systems for constructing simple models by

means of tangible building blocks are described. In [15],

cameras were used to capture the arrangement of 3D

blocks, and then project textures onto the surface. The

blocks could then be rearranged and the graphical models

updated. In [1], plastic bricks with microcontrollers may be

connected together, with the arrangement then captured by

message passing and producing a 3D graphical model of

the construction. The user may then tour the structure in a

virtual environment.

In the Façade system [3], a collection of photos from

various angles may be converted into an approximate 3D

model, with the user guiding the system on making deci-

sions about various geometric constructs.

MultiGen Smart Scene [11] is a commercially available

system that allows users to construct objects in a virtual

environment. The user interface is centred on two pinch

gloves, supporting a number of two-handed interaction

techniques. The system tends to focus on working on a

direct ratio, rather than action at a distance techniques.

Other automated capture techniques

In the construction and surveying domain, a number of

techniques are used to capture the geometry of outdoor

objects [16]. In many cases, CAD drawings of buildings

are already available, however for use in AR applications

there may be a number of problems with these:

• Drawings may only be 2D floor plans, and immersive

rendering requires full 3D models, preferably solid

graphical models and not simple wire frames.

• Top down 2D floor plans do not always show 3D

features like tunnels, pitched roofs, and door height.

Extruding a 2D model cannot produce these features.

• During the construction or renovations of the build-

ing, the actual implementation of the building may

vary without the plans being updated.

• The drawings may only be available on paper.

Based on these problems, there is a spectrum of possible

information sources for AR systems, with two extreme end

cases. The worst case is there is no useful information, and

in the best case there is a complete 3D model in a proper

data format. Our paper focuses on improving the methods

for cases where there is little or no prior information about

the object to be modelled. There are a number of methods

to construct these models; two of these methods are as

follows: directly measuring the building by tape measure,

or the acquisition of the graphical model by range sensing.

A technologically simple method for constructing a 3D

model building is to measure it with a tape measure, re-

cording the dimensions and geometry of the building. This

information can then be used to build the model using a

desktop 3D CAD system. The model may be visually veri-

fied by loading it into an AR system, taken outdoors, and

compared against physical building to check for accuracy.

If some details have not been entered properly, the person

must refine the model by moving between the AR system

and the desktop until they are satisfied (which is how we

have previously created our models).

Recent technology has enabled the automated capture of

buildings using portable laser scanners, synthetic aperture

radar, and stereo imagery. However, these methods tend to

generate very large quantities of polygons for even simple

cube shapes, and so filtering on the results is required. All

features in the object must be visible to the scanning de-

vice; otherwise, those obscured areas will be poorly de-

fined. These methods may be ineffective in environments

where it is not possible to obtain all the necessary views of

the building, such as when it is covered by trees, clouds, or

other objects.

3. Building construction example

Our first application domain for Tinmith-Metro is the

modelling of large outdoor structures. An example of how

to construct an object model is detailed to examine this

modelling technique. This example models a school

building, which is a round shape, with an air conditioning

tower on the roof, and large windows on the side. The

building is neither a box nor a cylinder, and so requires

different primitives for modelling.

System start up – The user dons the wearable computer,

HMD, and pinch gloves. The user then starts Tinmith-

Metro and performs the calibration of the trackers.

Create perimeter walls – The overall top down outline

of a building must first be specified. In the example build-

ing, there are 32 facets, but the user will only define the

outline of the building with 10 planes for simplicity. The

building is approximately a cylinder, but not similar

enough to use the real cylinder primitive. To create the

outline, the user creates infinite planes to mark each wall.

Each plane is created by the following: 1) the user posi-

tions themselves to look down the edge of a building wall,

at any convenient distance, 2) the user places the eye cur-

sor along the wall edge, 3) the user selecting the menu op-

tion with the gloves to create a right facing wall, and 4) the

right facing wall (an infinite plane) is added to the virtual

world intersecting the eye cursor and perpendicular to the

image plane. This wall cuts the entire infinite world in half,

in the same way as the real wall does, with the left being

inside the building, and the right being outside. By walking

around the building and marking each plane, the user is

carving away sections of the infinite space and defining the

volume of the building. Eventually, when the user has

completely circled the building, the perimeter of the vol-

ume is no longer infinite, and is now closed. The final re-

sult is a 2D bounded perimeter as shown from the top

down view in (1) of Figure 2. This figure shows the very

long planes that created the bounding volume.

Create floor and roof – To complete the first solid

shape of the model, the 2D perimeter is constrained with a

roof and floor. These are created by the user looking to-

ward the centre of the building and creating a default floor

at zero metres and a default roof at three metres.

Create solid object – The infinite planes are all separate

Figure 2 – Tinmith-Metro Demonstrating Various Stages of Construction of 3D School Model
(1) Top down view of infinite planes defining volume of building, (2) Solid round shaped building, (3) Immersive HMD shot of school, looking south

and do not currently form a proper solid object. To form a

solid object, the CSG intersection operation is selected

from the Tinmith-Hand menu with the pinch glove. Once

the operation has been initiated, the renderer draws a pre-

view of current model. The user interactively corrects the

height of the roof by lifting or lowering it to match the

correct height of the building; and this is verified by using

the registration of the virtual object against the physical

building. When the roof is in the correct position, the inter-

section operation is committed with another glove menu

selection. The model of the building is now at the stage

depicted in (2) and (3) of Figure 2.

Create air conditioner tower – The air conditioning

tower may be added in a number of ways. One method

uses a default cylinder primitive, scaled and moved into

position. A second method is to use the infinite planes

technique to create a completely new shape. In this exam-

ple, the user will use the infinite planes technique and the

same CSG intersect operation, but this time the tower roof

is higher, with a reduced width.

Combine two objects together – Currently, portions of

the air conditioner tower exist inside the building object.

The tower contains internal facets that are not visible and

wastes graphics resources. Using the CSG union operation,

the system can merge the tower and building objects into

one object, removing the internal facets and simplifying

the model, producing a single object.

Create windows – The next task for the user is to add

coloured depressed windows into the building, which is

done by carving into the building. First the user creates a

box shaped object to use as a tool, whose profile matches

that of the window, and has a depth of at least the win-

dow’s depression. The box object tool may be created us-

ing a prefabricated model or constructed by the user. The

user positions themselves to be able to see the window

easily, and the CSG difference operation is selected. Using

the gloves, the user pushes the box object tool into the

building, in the same way that a cookie cutter is used to

remove portions of dough. The box object tool is pushed

into the wall until it is the same depth as the window de-

pression. The facets cut into the building are coloured blue

like the window, and are also indented into the shape, they

are not just surface modifications.

Results

The user has just created a model of a building that is

approximately round, along with an air conditioning ma-

chinery tower, and carved in windows, shown as a ray

traced image in Figure 1. The user may continue to model

the building to any level of complexity that they desire,

depending on the requirements for the model.

The accuracy of the objects created with this system is

largely dependent on the tracking hardware used, and the

amounts of care taken by the user to accurately enter the

information. For position tracking, a standard GPS with

differential has accuracies ranging from 1 to 5 metres. For

orientation tracking, the IS-300 has a resolution of 1° static

and 3° dynamic accuracy, with models measured as close

to the building as possible (without degrading the GPS) are

the most desirable.

4. Street furniture example

A second application domain for Tinmith-Metro is to

position models of typical community infrastructure,

“street furniture”, such as park benches, rubbish contain-

ers, and street lamps, located at our university campus. In

this second example, the user operates a customised menu

structure in Tinmith-Metro to position prefabricated mod-

els of smaller street furniture items. These models were

created using NewTek LightWave and converted into the

custom Tinmith file format.

Create grass area – The user creates a grass area by

using the infinite planes technique to mark out a perimeter.

The area the user is marking is between numerous campus

buildings, and so the user approximates the area with sev-

eral planes. A special “create grass” menu operation is

selected, and then floor and roof are both created at default

heights and intersected with the perimeter. The resulting

object is a grass slab that is 5 cm thick. The purpose of the

grass is to supply a background for the objects, and so ac-

curacy or shape is not a concern.

Place down objects – The user moves around the area,

standing near the real world objects. The user has previ-

ously modelled the required objects such as lamps, rubbish

bins, benches, and trees on a desktop system, at the desired

accuracy. By using the glove and menu, the object to place

down is selected and then instantiated into the modelling

environment.

Placement defaults and adjustment - By default, an ob-

ject is placed one metre in front of the user, and oriented

away from the image plane. This allows the user to imme-

diately place an object at the correct orientation and posi-

tion. The user may then manipulate the object if desired.

Image plane techniques are inappropriate for the rotation

of an object about the Z (heading) axis when in immersive

view; therefore the top down map is used instead. If an

object is not the correct size, it can be easily scaled to size

using two handed manipulation techniques.

Figure 3 – Ray traced Tinmith-Metro captured street furniture model

Results

After the previous process is complete, the user has

captured a model depicting the grass area, with various

items of street furniture laid out on top. This model can be

viewed immersively in the system, or displayed on a sepa-

rate VR or desktop system indoors, as ray traced in Figure

3.

5. User interface

Traditional desktop input devices such as keyboards and

mice are not suitable for working with augmented reality in

a mobile outdoor environment. As a result, there is a need

for new forms of user input devices and portable tracking

devices to support these new input devices. As previously

mentioned, the user interface Tinmith-Hand is based on

gloves worn by the user, with vision based tracking, as an

appropriate means to allow the user to manipulate 3D ob-

jects, while at the same time selecting menu options. Tin-

mith-Hand may be used for a wide variety of wearable AR

applications, not just Tinmith-Metro.

Menu system and gloves

Since the modelling system supports such a wide vari-

ety of commands, it is not practical to make them all avail-

able at any given time. An eight item menu is placed on the

bottom of the user’s display to navigate the options and

select the actions required. The items are logically mapped

left to right, associated with the eight fingers of the user.

The user makes pinching gestures between the finger and

thumb to select the desired option. The touching of any

finger to the palm of the hand returns the menu to its top

level. Note that the tracking of the hands and head is not

needed for this, as menu options can be selected at any

time, and are always visible at the bottom of the display.

All of the commands mentioned in the previous examples

were executed via the glove and menu, and no keyboard or

track ball (mouse) interaction was required.

Object selection and transformation

In order to manipulate objects, the user must be able to

select objects and modify them. The system supports a

number of cursors for pointing, one handed tracking, two

handed tracking, centre of the display eye cursor, or a side

worn hand-held track ball. Selection is activated when the

user pinches the glove to trigger a menu option, the system

then fires a perpendicular ray from the cursor on the dis-

play into the world, and intersects it with the first available

facet. Using the menu, the user can move up the object

hierarchy to select ancestor objects of the facet, if desired.

It is not possible to select objects that are occluded by oth-

ers using the immersive view. However, by switching to

the top down map, (or any other external camera view) it is

possible to select objects that would be otherwise hidden.

Selection may be a slow process especially when deal-

ing with large quantities of individual objects, and so to

cache these selections for later use, the system supports

multiple selection buffers (ie, clip boards) and the ability to

switch between them at any time. Objects in active selec-

tion buffers can then be manipulated.

Once selected, objects may be manipulated using image

plane techniques. Image plane techniques treat the graphi-

cal objects as flat 2D objects, and map the 2D movement

of the cursor into 3D transformations of the objects, while

keeping the object attached to the cursor. Therefore, it is

not possible to alter objects in directions the user is facing.

Tinmith-Hand may use any of the four cursors to per-

form image plane transformations on objects, although the

two handed input gloves are the main method envisaged.

Other previous work such as [2, 7, 19] also used two

handed techniques to work in 3D environments. We have

found rotation manipulation particularly well supported by

two-handed interaction techniques. By using two hands,

the user can specify the orientation to apply based on the

angle the hands form, and scale an object based on the

distance the hands are apart from each other. To move an

object, it is slaved to sit underneath the cursor, and the user

moves the cursor to the new location. It should be noted

that during these operations, the actual locations of the

hands is not important, just the projection of the cursor that

is drawn on to the display.

6. CSG modelling system

The CSG engine that forms the core of the modelling

system allows the construction of complex shapes using

only simple input primitives such as infinite planes, boxes,

and objects that can be described using an equation. The

implementation is based on the same concepts as that used

in ray tracers, such as POV-Ray [14].

Every primitive has the notion of an inside and outside

region, defined by the direction of the surface normal(s).

With this concept, it is possible to test if another object is

partly or fully inside or outside a second object. The three

fundamental CSG operations are shown in Figure 4.

Solid objects have a well defined ‘inside’, but infinite

planes do not, as they extend on to infinity. As a result, the

front and back faces are used to divide the world into two

spaces, inside and outside. Hence, if 6 perpendicular planes

are arranged correctly and intersected, they will form a

new object that is a closed finite 3D box.

Using infinite planes, only a convex shape can be built

with a single CSG operation – an object in which there are

no holes or indentations. Buildings with indented windows,

or T, L, and donut shapes cannot be modelled using a sin-

gle CSG operation, since the planes would cancel each

Pyramid Sphere Union Intersection Difference

Figure 4 - CSG Primitive Operations

other out. Figure 5 shows some examples of buildings that

cannot be modelled using a single infinite plane CSG inter-

section.

However, by breaking the problem down into stages, a

concave building may be created. The user first creates a

bounding box for the entire object, and then creates a new

box using the same techniques for the part of the building

that is missing. Subtracting one part from the other pro-

duces a building that is concave shaped. The same tech-

niques are applied to carve out doors, tunnels, and win-

dows (as in our example).

As a result, using just infinite planes, the final example

model shown in Figure 1 was created, demonstrating the

true power of CSG operations. With the addition of other

primitives like spheres, cones, and polygons, more com-

plex shapes may also be constructed.

CSG Engine Implementation

The CSG engine operates using a set of user selected

objects, which the system breaks down into facets. The

objects are subdivided relative to each other, so that each

polygon is used to cut every other polygon in half. This

new complex mesh (which can be input² in size) is then

processed, deleting facets that do not fit the set operation.

The subdivision is then reversed to recover facets that were

not altered, and the result is then updated on the display

interactively so the user can view the results. This method

is computationally expensive, although runs at interactive

frame rates when creating building models. Given highly

complex objects with thousands or more of facets arranged

at many angles, the process can slow to the point of being

unusable. Other techniques for solving CSG operations

include using rendering hardware, ray tracers, or voxels,

but there are a number of problems with each of these

methods that make them unsuitable for our task.

7. Tinmith system

The Tinmith-Metro system, and the user interface Tin-

mith-Hand, were built on top of an architecture we have

created for the development of augmented reality applica-

tions. The system, known as Tinmith, is a complete custom

software system, as well as various off the shelf and cus-

tom built hardware components.

Hardware

The wearable computer system as shown in Figure 6 is

based on a Gateway Solo P2-450 laptop (64 mb RAM, ATI

Rage 3D) mounted on a hiking backpack. An Intersense

IS-300 tracker is used for orientation sensing. Position in-

formation is gained from a Garmin 12XL GPS with DGPS,

with an accuracy of 1-5 metres depending on conditions.

The display is a Sony Glasstron PLM-700e monocular

SVGA display. A large 12V battery powers the various

trackers, as well as the small LCD television on the back

for debugging, used for spectators to view. A SuperCam

WonderEye USB video camera is used to provide images

for the hand tracking system.

The laptop runs RedHat Linux 7.0 with kernel 2.4 as its

operating system, including the standard GNU develop-

ment environment. XFree86 v3.3.6 is used for graphics, as

it does hardware accelerated OpenGL using Utah-GLX.

Pinch gloves

In order to control the menu system, we use a pair of

custom designed pinch gloves (shown in (1) of Figure 6) as

our main input device. These gloves are similar to a num-

ber of other products on the market, such as the FakeSpace

PinchGlove [4]. The main difference with our gloves is

that there are sensors on the palm as well as the thumb and

fingers like the PinchGlove.

Our glove is a simple gardening glove, with special

metallic tape attached which conducts electricity. This tape

was attached to the finger tips, palm, and thumb, and wires

were connected to a microcontroller. The microcontroller

polls the fingers for new presses 30 times per second, and

then sends events to the laptop via a serial cable. If a new

event is received, the Tinmith-Hand user interface proc-

esses this new information to control the menus. Thou-

sands of finger gesture combinations are possible with

these gloves.

Tinmith evo5 software architecture

Although the architecture shares the same Tinmith

name as previous systems (see [12, 18]), the current ver-

sion, Tinmith evolution 5, is based on a completely new

object oriented design, implemented in C++. The main

goals were speed and efficiency, allowing us to write real

world applications easily. Some brief details are presented

in this paper.

The system is based around a concept of data flow,

which is where information about the world (such as track-

ers and input devices) enters the system, is processed, and

Figure 5 - Concave T, L, and Donut Shaped Buildings

Figure 6 – (1) Tinmith wearable computer, with glove input devices
(2) Rear shot located near example school building, facing west

then the processed information is rendered to the HMD.

Trackers and input devices are abstracted to specialised

objects, which are then made available for other objects

(known as listeners) to take values from. This is similar to

an Observer/Observable pattern [6], and is implemented

using a callback mechanism. When new tracker informa-

tion enters the system, the values are propagated to all the

listening objects. The display is then updated when the

system becomes idle and all data values have been proc-

essed. Callbacks are performed using simple function calls,

and no extra overheads are imposed from using threads,

network transport, shared memory, or system calls. As a

result, this ability to glue together objects makes writing

the system simpler, while at the same time imposing little

performance penalty on the CPU. However, network seri-

alisation objects may be plugged in to allow the software

to be distributed over multiple processes or machines (with

an appropriate speed penalty).

The object oriented design includes an object store,

which allows the storage of objects keyed by descriptive

text labels and using a tree structure similar to a file sys-

tem. The store also supports a special feature known as an

object symbolic link, which allows the flow of data be-

tween objects to be redirected from different sources with-

out the other objects being aware of these changes. Using

this feature, we have implemented a patch board of track-

ing devices, allowing us to transparently change between

them, combine devices, or use simulated devices without

the application being made aware of this. This allows us to

build the powerful user interaction techniques mentioned

earlier.

The rendering system implemented in Tinmith is a full

hierarchical modelling system, similar to SGI’s Inventor

[17], which contains a scene graph and transformation

nodes, which can be directly linked to tracking devices.

The CSG engine is tightly coupled into this system to al-

low complex interactive modelling operations. Each object

in the scene graph is referenced in the object repository

and contains its own unique reference path. The renderer

reads a custom model format that is easily converted to

primitive triangle lists or VRML files. As an added feature,

we have included a 2 metre high human avatar, with 15

separate articulated parts, which is used to define the posi-

tions of the different tracking devices that are attached to

the user. This allows us to easily resolve the coordinates of

relative tracking devices such as the hands, and also to

view the location of the user in the world from external

camera views.

ARtoolkit image recognition

Tracking object movement outdoors cannot use stan-

dard virtual reality tracking systems. However, using fidu-

cial markers on the hands, and the ARtoolkit system v2.33

[10], it is possible to implement a hand tracking solution

that performs exceptionally well outdoors. The ARtoolkit

reads video frames from a single USB camera, detects

simple fiducial markers containing patterns, and resolves

their position relative to the camera with a 6 DOF 4x4

transformation matrix. Frame rates of 5-10 fps (depending

on camera compression) with 20% CPU utilisation is typi-

cal when using the system, so the performance is quite

reasonable. The tracking works well outdoors, although the

orientation jitters considerably (around 10°-20°), due to the

low resolution of the cameras used. This is not a problem

for our 2D cursors.

Two small 2 cm targets containing unique triangle pat-

terns are placed onto the gloves’ thumbs. The ARtoolkit

libraries are built into a tracker class, passing on the posi-

tion and orientation information to the scene graph, which

calculates the real world coordinates based on the avatar’s

position and orientation.

Coordinate systems

Traditionally, navigation on a planet wide scale is done

using latitude and longitude (LLH) spherical coordinates,

and so GPS tracking uses this as its native coordinate sys-

tem. However, on smaller scales, coordinate systems based

in metres, such as UTM (Universal Transverse Mercator),

are used by hikers and military personnel when using

maps. In other specialised areas, ECEF coordinates (Earth

centred XYZ) are used. As a result, tracking devices in the

system support all of these coordinate systems [8], and can

set and retrieve values with an automatic translation.

Since the renderer operates using metres, if the system

operates far away enough from the UTM origin (which is

typically millions of metres) then the centimetre level hand

tracking and finely rendered objects distort. This is due to

floating point resolution limitations, and to overcome this

problem, the renderer uses a new coordinate system with a

more local origin (based on UTM and within a few hun-

dred kilometres), although this translation is completely

transparent to the user and the model files generated.

8. Other application domains

Although the menus and prefabricated objects have

been specially customised for two application domains

supported by Tinmith-Metro, it should be remembered that

this paper is presenting new AR methodologies. As a re-

sult, there is a wide range of application domains in areas

such as the environmental, surveying, military, and archi-

tectural fields.

Although recording features such as city blocks, farm

plots, and lakes is currently implemented, Tinmith-Metro

does not easily support extruding 2D concave outlines into

3D solids, for the creation of features such as rivers. Cur-

rently, the user would have to construct a river as a series

of convex shapes and join them together (since rivers tend

to snake around, forming a concave shape). A better tech-

nique would be to use a technique we have devised known

as ‘the bread crumb trail’, where the user walks along the

perimeter of an object dropping markers at every turn, and

then producing a solid shape from this outline. This tech-

nique only works if the user can be near the object; the

infinite planes technique can work from any distance.

A second technique we would like to explore is using

the ARtoolkit as the sole tracker, and deactivating the GPS.

By placing a few fiducial markers on small objects that are

below GPS resolution, we can rotate the small objects

around, marking all the planes, perform a CSG operation

and define 3D graphical objects as before.

Some limitations of the techniques are that large distant

objects such as mountains would be difficult if not impos-

sible to model. The system requires the user to be able to

walk around the object (or in enough places to specify all

the perimeter planes).

9. Conclusion

This paper has presented a new methodology for cap-

turing outdoor city models and the placement of objects

using wearable augmented reality systems. These new

techniques have been implemented in a demonstration

system known as Tinmith-Metro, based on the Tinmith

evo5 software architecture. This demonstration system,

which is executed on a wearable backpack computer with

pinch gloves, has been used to construct example models

of real world structures, as presented in this paper. A sig-

nificant feature of this system is it allows the user to visu-

ally verify the object’s accuracy at creation time, and allow

others to view them on indoor VR or desktop systems in

real-time, or at a later date.

10. Acknowledgments

The authors are very grateful for the work of Arron and

Spishek Piekarski, who both helped in the design and con-

struction of the glove and HMD, and to Leonard Teo for

the rendered graphical models. This work was supported in

part by grants from the Division of ITEE and the Defence

Science Technology Organisation (DSTO).

11. References

[1] Anderson, D., Frankel, J. L., Marks, J., Leigh, D., Ryall, K.,

Sullivan, E., and Yedida, J. Building Virtual Structures

With Physical Blocks. In 12th Int'l Symposium on User In-

terface Software and Technology, pp 71-72, Asheville, NC,

Nov, 1999.

[2] Bowman, D. A. and Hodges, L. F. An Evaluation of Tech-

niques for Grabbing and Manipulating Remote Objects in

Immersive Virtual Environments. In 1997 Symposium on

Interactive 3D Graphics, pp 35-38, Providence, RI, Apr

1997.

[3] Debevec, P. E., Taylor, C. J., and Malik, J. Modeling and

Rendering Architecture from Photographs: A hybrid ge-

ometry- and image-based approach. In 23rd Annual Con-

ference on Computer Graphics, pp 11-20, New Orleans,

LA, Aug, 1996.

[4] FakeSpace Labs. Pinch Gloves. 2001. URL -

www.fakespacelabs.com/products/pinch.html

[5] Feiner, S., MacIntyre, B., and Hollerer, T. A Touring Ma-

chine: Prototyping 3D Mobile Augmented Reality Systems

for Exploring the Urban Environment. In 1st Int'l Sympo-

sium on Wearable Computers, pp 74-81, Cambridge, Ma,

Oct 1997.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. De-

sign Patterns: Elements of Reusable Object-Oriented Soft-

ware. Reading, Ma, Addison Wesley Publishing Company,

1995.

[7] Hinckley, K., Pausch, R., Goble, J. C., and Kassell, N. F. A

Survey of Design Issues in Spatial Input. In 7th Int'l Sym-

posium on User Interface Software Technology, pp 213-

222, Marina del Rey, Ca, Nov 1994.

[8] Intergovernmental Committee On Surveying and Mapping.

Geocentric Datum of Australia - Technical Manual. URL -

http://www.anzlic.org.au/icsm/gdatm/index.html

[9] Julier, S., Lanzagorta, M., Baillot, Y., Rosenblum, L.,

Feiner, S., and Hollerer, T. Information Filtering for Mobile

Augmented Reality. In 3rd IEEE and ACM International

Symposium on Augmented Reality, pp 1-10, Munich, Ger-

many, Oct 2000.

[10] Kato, H. and Billinghurst, M. Marker Tracking and HMD

Calibration for a Video-based Augmented Reality

Conferencing System. In 2nd IEEE and ACM International

Workshop on Augmented Reality, pp 85-94, San Francisco,

Ca, Oct 1999.

[11] Multigen. SmartScene. 2001. URL -

http://www.multigen.com

[12] Piekarski, W., Gunther, B., and Thomas, B. Integrating

Virtual and Augmented Realities in an Outdoor Applica-

tion. In 2nd IEEE and ACM International Workshop on

Augmented Reality, pp 45-54, San Francisco, Ca, Oct 1999.

[13] Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik,

R., and Mine, M. Image Plane Interaction Techniques in

3D Immersive Environments. In 1997 Symposium on Inter-

active 3D Graphics, pp 39-43, Providence, RI, Apr 1997.

[14] POV-Team. The Persistence Of Vision Raytracer. URL -

http://www.povray.org

[15] Raskar, R. Welch, G., Chen, W. Table-Top Spatially-

Augmented Reality: Bringing Physical Models to Life with

Projected Imagery. In 2nd IEEE and ACM International

Workshop on Augmented Reality. pp 64-71, San Francisco,

Ca, Oct 1999.

[16] Sester, M., Brenner, C., and Haala, N. 3-D Virtual Cities

and 3D Geospatial Information Systems. In IMAGE2000

Workshop, Ipswich, Qld, 2000.

[17] Strauss, P. R. IRIS Inventor, A 3D Graphics Toolkit. In

8th Annual Conference on Object-oriented Programming

Systems, pp 192-200, Washington, DC, October, 1993.

[18] Thomas, B. H., Demczuk, V., Piekarski, W., Hepworth, D.,

and Gunther, D. A Wearable Computer System With

Augmented Reality to Support Terrestrial Navigation. In

2nd Int'l Symposium on Wearable Computers, pp 168-171,

Pittsburg, Pa, Oct 1998.

[19] Zeleznik, R. C., Forsberg, A. S., and Strauss, P. S. Two

Pointer Input For 3D Interaction. In 1997 Symposium on

Interactive 3D Graphics, pp 115-120, Providence, RI, Apr

1997.

