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Abstract

This paper describes the concept of augmented
reality, the process of drawing virtual images over the
real world using a head mounted display. Using
wearable computers, it is possible to take augmented
reality software outdoors and visualise data that only
exists in a computer. The paper discusses all concepts
in detail, and the hardware used to build the system,
explaining the various components and costs.
Examples of AR applications developed by the
authors are explored, showing some ideas as to what
the technology could be used for.

The Tinmith system is a complete software
architecture designed to develop AR and other
software that deals with trackers, input devices, and
graphics. The design of the code is explained,
including how it was developed. Tinmith is based on
a completely free software system comprising the
Linux kernel, GNU tools and libraries, the GNU
C/C++ compiler, XFree86 graphics server, GGI
graphics interface, OpenGL 3D renderer, PostgreSQL
database, and Freetype font renderer.

1 Introduction

In recent times, numerous advances have been made
in many areas of electronics and computing, allowing
us to explore many previously unknown areas and
open up new opportunities for research.

Technology such as powerful portable computers,
head-mounted displays (HMD), global positioning
systems (GPS), and software have made it possible to
develop an augmented reality (AR) system which can
be operated in a non-computer friendly, outdoor
environment.

Imagine a user wearing a head-mounted display,
allowing them to watch TV or their computer on a
virtual screen projected into their eyes, similar to
virtual reality (VR) technology you may have seen
before. However, using an optical combiner inside
the HMD, it is possible to see both the real world,
and overlaid computer imagery at the same time. This

ability to view physical and virtual worlds at the
same time is called augmented reality, and is the
focus of this paper. AR is an exciting new field and
the authors feel that it has enormous potential for
both commercial and recreational use.

Since this is a field with new technology that many
people have not been previously exposed to, this
paper will provide an introduction explaining the
technology and components in some detail. Some of
the AR applications developed by the authors are
then discussed, showing how the technology can be
used in the real world. Most of all, since this is a
conference about Linux and software, the rest of the
paper then discusses how the system works from a
software point of view. We discuss the free tools we
used (such as Linux, GNU, and X) to build the
system, and the overall architecture of the software.

The software developed for this system is called
Tinmith, which was started in 1998 as an
undergraduate engineering project, and is now being
used further as part of the author’s PhD thesis. The
system is always under continuous development as it
is a test bed for many new research ideas. The main
goal was to provide a complete architecture to
develop AR and other applications that deal with
trackers, input devices, and graphics, something that
is currently not very well developed.

Most of all, the paper has been written to give
information about constructing your own hardware.
Hacking isn’t just about software, its about using a
soldering iron to modify your hardware, and making
mistakes. The components and their costs are
discussed, however, it is not a cheap field to be in as
some of the hardware tends to be expensive and hard
to find. So read on to find out more.

2 Hardware

The most important aspect of this work is the
hardware, as it is what enables us to do our work.
Some of the hardware is what would be termed
‘exotic’, in that most people do not know they even
exist, let alone own them and dream of attaching
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them to a PC. Without these components, this
research would not even be possible, so it is
important to explain what each of them do.
[AZUM97a]

The first thing to realise is that hardware enables
software to do things, you can have the best software
in the world but if you don’t have a computer to run
it on then it is useless. So in order to do AR while
walking around outdoors, we need certain parts
before the software can be executed.

So, to perform our research, we have built up a
wearable computer [MANN96, BASS97] based
around a standard PC laptop, mounted on a backpack.
When walking around outdoors, traditional
components such as big displays and keyboards are
all useless, and so these have been replaced with
more exotic components such as a GPS receiver, 3-
axis magnetic compass, head mounted displays, and
custom built input devices.

2.1 Integration

Everything needs to be carried around by the user,
making them completely independent and able to
move autonomously. In order to connect everything
together and make it portable for outdoor use, each of
the components are firmly attached to a hiking frame,
with the cables tied up and secured. The figure below
shows each of the devices mentioned in this section,
plus the batteries, straps, and cables used to hold
everything together.

Figure 1 – Tinmith Backpack Outdoors

The first thing that most people observe when seeing
the backpack is that it is heavy and bulky, and we
agree with them. But it does work however, and the
main objective of the project is to perform research
into augmented reality – the wearable computer
aspect is not so important. As a result, flexibility with
hardware and ease of use are the most important
driving factors. Given sufficient manufacturing and
financial resources it would be straightforward to
produce a smaller footprint device containing all the
components fully integrated, but this is not the area
of interest. Some companies are starting to produce

hardware for this application and so it is only really a
matter of time.

2.2 Portable Computer

The core of the system that brings everything
together is the laptop computer, which is used to
process the information from the sensors, and then
provide feedback to the user looking through the
HMD. For our system, we initially used a Toshiba
320CDS (P-200), although now we use a Gateway
Solo (PII-450) which is considerably more powerful.
Laptops are very useful for a wearable because they
are already portable, highly integrated, are power
efficient, and you don’t have to solder anything. It is
also possible to buy small, embedded OEM biscuit
PC boards, which usually have more I/O capabilities,
but require you to build the case and connectors
yourself.

Any kind of laptop can be used for a wearable,
depending on your personal taste, needs, and
financial resources. Some important factors are CPU,
memory, video, I/O, and Linux compatibility - and
most Pentium-based laptops work quite nicely. The
most critical ability is to have a laptop with serial,
USB, and PCMCIA connectors to allow the
connection of various kinds of devices.

2.3 Head Mounted Displays

The most obvious part of the system is the head
mounted display. We use two kinds of Sony
Glasstron devices: the PLM-S700E, which runs at
800x600, and the PLM-100 display, which runs at
NTSC resolution with a VGA converter.

A HMD is a relatively simple device, (although the
most expensive) containing an LCD display similar
to that used inside a small TV, and uses mirrors and
lenses to steer the light into the user’s eyes. When
wearing a HMD, the wearer is given the impression
of looking at a large screen floating several metres
away.

Figure 2 – Sony Glasstron HMDs

A traditional HMD for virtual reality is opaque, in
that the user wears it as part of a helmet, and the rest
of the world is completely blacked out so you are
immersed into the VR environment. When the power
goes, out everything is dark and you must take the
display off to see anything. The key difference with
the HMDs we are using is that they are partially
transparent.
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Figure 3 – Transparent HMD Internal Construction

Instead of using standard optics like in opaque
HMDs, these use a half-silvered, optical combiner
mirror. The image from the LCD display is still
shown to the user as before, except now the mirror
also allows light from the real world. The end result
is a ghosted image where you can see the physical
world but also computer generated imagery, as
shown in the figure below.

Figure 4 – Simultaneous Virtual and Real Worlds

There are many kinds of HMDs on the market,
although most of them tend to be expensive
(thousands of dollars) as there is not a large market
for these yet. Also, HMDs vary in image quality and
field of view depending on the price. Some displays
have very dull looking images, do not work well in
sunlight, and have very low resolution. The term field
of view (FOV) is defined as how much of the user’s
vision the display can draw over, the larger the view
then the more complex the internal optics are.

Recently, a new generation of laser displays has
emerged, which paint an image on to the retina in the
back of the eye directly. These displays have a much
higher quality image, and will soon be small and
cheap enough to be actually used. These are still
being developed but are something to look out for.

2.4 Position Tracking

In order to allow the computer to draw images that
match the real world, it needs to know where you are.
When trying to overlay three dimensional models
over the real world, having an accurate position is
very important, otherwise the images will not overlay
correctly and the user will have trouble understanding
the image.

Since we are operating outdoors, we use US Global
Positioning System (GPS) satellites, along with a
Garmin 12XL receiver unit. The GPS receiver
calculates its position once per second by working
out its distance from a constellation of GPS satellites
in space. Due to atmospheric noise and intentional
signal degradation by the US Department of Defence,
(selective availability) the accuracy of GPS can vary

to around 30 metres, which is not acceptable. By
using a differential GPS receiver, it is possible to
receive correction signals from base stations that
allow us to get position updates that are at around 5
metres accuracy, although this can vary.

Position trackers rely on some kind of infrastructure
being in place before they can be used. Systems exist
that use magnetic and ultrasonic trackers, although
these have limited range and require fixed
transmitters. Other systems use video cameras to
capture images to work out location, but image
recognition is immature and requires prior knowledge
of the surroundings. The advantage of GPS receivers
is that their reference points are in orbit, meaning
they are visible almost all the time, and work
anywhere in the world. The only catch with GPS is
that it does not work indoors.

Figure 5 – Garmin 12XL GPS

Most GPS manufacturers support the NMEA-0183
standard, which allows us to transmit the GPS
position information over an RS-232 serial cable to a
PC for processing. This format is very easy to
process and contains the current world location in
latitude/longitude/height (LLH) values.

Since the GPS receiver is only being used as a way of
calculating position, having a unit with an inbuilt
display or map is a waste of money and not useful, as
it is mounted onto the backpack. When purchasing a
GPS unit, a good quality receiver is the criticial part,
as some units cut corners here. A 5 metre (using
differential) GPS unit can be bought for about $500,
while more accurate units (from 1 to 50 cm) range
from $8,500 to $50,000.

2.5 Orientation Tracking

Just knowing where the user is located in the real
world is still not enough for the computer to know
everything about where you are and what you are
looking at. The heading, pitch, and roll of the user’s
head is also important, as people very rarely look
exactly north. As a result, we use another sensor, a
TCM2-80 from Precision Navigation.

This unit uses a 3-axis magnetometer to calculate
heading relative to north, and pitch and roll. A fluid
filled sensor is used to provide extra calibration
information to the onboard microcontroller for
processing, and the data is then sent to a PC via an
easy to process serial protocol, at a rate of 16 Hz.
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Figure 6 – TCM2 Magnetic Orientation Sensor

The device is mounted onto the HMD, (which is
worn by the user) so that it can sense the movements
of the user. As they rotate their head, the display
updates itself to match.

There are not many devices of this calibre on the
market (due to a small demand) and vary in price
depending on accuracy and range. The price for the
TCM2 range of trackers is around the $1000 mark,
which is cheap in comparison to other units. The
problem with the TCM2 compass is that it tends to
jitter and suffers from magnetic distortion. Large
metal objects such as cars and street signs tend to
cause the compass to output incorrect information.
Other techniques like using gyroscopes and
accelerometers are immune to interference, but tend
to have problems with drift and alignment. One
solution is to use hybrid techniques, [AZUM99] that
combine magnetic sensors and gyroscopes together to
take advantage of their individual strengths. The
Intersense-300 (for $8,500) uses this technique to
produce output that is much more stable and accurate,
and is something we would like to acquire in the
future.

2.6 Miscellaneous Hardware

To provide networking, a Lucent WaveLAN card is
used. These operate at 11 Mbit/s and have reasonable
range around the building. They tend to suffer from
interference from large machinery and thick
buildings however, so we are experimenting with
antennae placement in the building.

One problem with current PCs is the lack of serial
ports – each of the tracker devices sends its data via
RS-232 cables, and most laptops only come with one
port. As a result, we have had to use PCMCIA based
adaptor cards to provide extra ports. These come at a
cost however, a four port Quatech card costs about
$800, and the connector contains a lot of very fine
pins that can break easily when being used outdoors.

We are patiently waiting for USB technology to
mature, then we can use RS-232 to USB converters
and a hub to connect up as many serial devices as we
like – this solution is a lot more expandable and cost
effective than using PCMCIA cards. Currently, the
converters are not properly supported under Linux,
and also are not integrated enough to allow us to have
ten of them without requiring lots of USB hubs and
power supplies to match.

2.7 Input Devices

A portable backpack computer is useless if the user
cannot interact with it. The HMD allows the user to
receive information from the computer, but not to
input information. Traditional desktop devices like
keyboards and mice are not practical outdoors as they
are too bulky and require a fixed surface. Instead,
devices such as small forearm keyboards, touch pad
mice, and track balls are required as an initial starting
point at least.

Figure 7 – Phoenix Forearm Keyboard and Usage

One thing that should be stressed is that we are in a
different environment from a desktop, with much
more freedom of movement, so why should we be
restricted to primitive two-dimensional input devices
from 20 or more years ago? Rather than try and fit a
3D immersive environment around 2D devices, why
not use devices that are designed for the
environment? As a result, other more exotic input
means like speech recognition and 3D input devices
are also currently being looked into.

At this point in time, we are experimenting with
using USB cameras to capture video, then perform
image recognition of special marker patterns to allow
the computer to work out the position and orientation
of the user’s hands. Hand tracking is traditionally
performed indoors using expensive magnetic
trackers, but these are too bulky and unworkable
outside. By using hand gesturing, voice recognition,
and home made data gloves, we hope to develop a
useable user interface for AR. This user interface will
allow users to manipulate and create new objects in a
3D outdoor AR environment, as shown in the mock
up figure below.

Figure 8 – Simulation Showing Hand Gestures
Manipulating 3D Objects
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3 Outdoor Augmented Reality

Given the previously integrated hardware
components, plus a suitable software system, it is
possible to take the equipment outdoors to use.
[AZUM97b, FEIN97] We have implemented a
number of AR applications using the Tinmith system,
and these will be explained in the following sections.

3.1 Outdoor Problems

As with most research, it usually takes place indoors
under nicely controlled conditions. Factors such as
lighting, metal, power, and portability can be easily
controlled, as everything is static.

Moving outdoors is a real challenge because
everything must be portable, power must be carried,
each unit uses a different supply voltage, and fragile
connectors easily break. Things that work indoors,
like the latest and greatest processors, hard disks, and
3D cards, cannot be made portable. Many tracking
techniques stop working in large areas. As a result,
sacrifices must be made in order to work outside.

Probably the biggest challenge with working
outdoors is the cabling and integration – most PC
equipment is very fragile and not designed to be
moved and put under stress, and as a result, things
tend to break a lot. Wiring needs to be tied to the
backpack, but at the same time needs to be able to be
removed once indoors when things are changed. If
the HMD does not work, you cannot use the laptop
screen because it is fixed down to the backpack. The
tracker devices fail to send serial data due to fragile
PCMCIA connectors. Sometimes things don’t work,
and then a faulty connector will begin to work again
for no real reason.

As a result, working with this equipment can be
frustrating at times, and going outside usually
involves quite a bit of preparation, including going
down three flights of stairs in the CS building from
our lab. In most cases, things are tested indoors as
much as possible before venturing into the hostile
outdoor environment.

3.2 Wire Frame Augmented Reality

Once the hardware issues are resolved, the real
research is in augmented reality however. The main
output of the Tinmith software system is 3D rendered
output. This renderer is similar to that used for games
such as Quake, except the renderer is a lot simpler
and has been optimised for AR, and runs in a variety
of different modes. The different versions of Tinmith
each have renderers of different capabilities, and so
the release number will be mentioned for each one.

In this example, we are using the wire-frame based
renderer in Tinmith-III. A model of some UniSA
campus buildings was carefully designed in
AutoCAD over a period of about two weeks, (most
designers use this program so there is no choice in
this matter) using information from the GPS to align
it with the real world. The figure below shows
roughly what the model looks like from an aerial

perspective, and the images presented here are based
on this.

Figure 9 – Wireframe Model of Selected Campus
Buildings

For the renderer, instead of the user controlling the
position of the camera, the GPS and compass are
used instead. So as you walk around the real world,
the computer renders a scene to the display that
attempts to match the real world.

Figure 10 – AR Wireframe Building Overlay

The figure above shows one such example, showing
the edge of the building on the right, and the
computer has overlaid the wireframe in green over
the top. In the centre of the display is a green box,
which was used to visualise an extension to a lecture
theatre at UniSA. The wireframe is useful for
overlaying on real objects, but not very useful for
visualising non-existent objects. As a result, a solid
renderer is used to produce better displays and was
introduced in Tinmith evo4. The rest of the screen
components will be explained in a later subsection.

The wireframe model does not line up with the
building due to tracker errors – the GPS and compass
are not perfect and as a result the image tends to drift
and jitter across the screen instead of being perfectly
stable. [AZUM99] This can be partly fixed with more
expensive equipment, but there is no such thing as
perfect tracking, and there are still problems with the
computer not rendering frames to the display fast
enough. As the user moves their head, the tracker
returns a value of the current position, which is sent
to the computer with a small delay. The computer
then redraws the display, then waits for the retrace in
the HMD to redraw the screen. This all takes time (40
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ms and up) and even delays near 1 ms can be noticed
by the user.

3.3 Architectural Visualisation

The new solid renderer in Tinmith evo4 allowed
more powerful visualisation – rather than just looking
at enhancements of existing objects, it allowed us to
see what things would look like before they are built.
This is useful for people like architects and town
planners, they can use the computer to see in real-
time what changes to a city landscape would look
like without having to use a bulldozer. To do this, the
AutoCAD wire-frame model was extended to contain
an air bridge connecting two of the campus buildings,
drawn using solid polygons.

Figure 11 – AR Architecture Visualisation Example

The figure above shows the scene outdoors through
the HMD. Notice the green wireframe outline does
not line up to the building once again. Also note the
limited area that the display can actually draw on, the
field of view of most HMDs is quite small.

3.4 Outdoor Navigation System

The original Tinmith-II system was designed to
be used as a navigation system by DSTO. To
navigate outdoors in unfamiliar terrain, a map and
compass must be used to avoid getting lost. This
tends to rely on using local landmarks, plus counting
paces and using a compass. This fails to work during
the night when there is no light, or in featureless
terrain. Also, if an obstacle like a forest or river is
encountered while dead reckoning, you must plow
through it rather than walk around it, otherwise you
will lose your position. However, using a suitable
navigation system mapped to a HMD, it is possible to
see exactly where you are in the world, what objects
are around, dangerous places to avoid, and steering
instructions to get where you are going. The goal was
to improve situational awareness, make someone’s
job easier, and give them time to think about more
important problems.

The main interface for this navigation system is a
2D top down gods-eye view of the world, with fixed
information overlaid on top, shown in the figure
below.

Figure 12 – Outdoor Navigation System Example

At the top of the display is the compass heading,
which is represented as notches and a value every 45
degrees. As the user rotates their head, the compass
updates itself and scrolls left or right to indicate the
new heading. The various pieces of text information
placed around the display are used to show position,
GPS accuracy, and steering instructions to the
nominated waypoint.

At the centre of the display is a blue circle indicating
current position at the centre, with a blue triangle
indicating the direction of where the user wants to go.
Shown in yellow is the outline of the buildings in the
area, which could be used to walk around the
buildings. A red line with crosshair is controlled with
a touch pad mouse to designate new waypoints on the
map. The entire display is presented as a top down
view, where the direction the wearer is facing is up.
Every visual cue is rotated in real time as the user
moves around.

3.5 Integration With DSTO DIS Simulations

As part of our collaboration with DSTO, we modified
the system (to produce Tinmith-III) so it would be
able to interact with other systems. At DSTO, they
run a lot of simulation software, such as ModSAF
[ARMY99] and MetaVR [META99] (very expensive
commercial programs). The ModSAF program is
used to generate entities for virtual battles, containing
code to generate realistic intelligence for tanks,
helicopters, and soldiers. These entities generate DIS
packets which are broadcast onto a network for other
software to use. The Distributed Information
Standard (IEEE standard 1278) is an open standard
using UDP, designed to allow simulation software to
share information. The MetaVR program takes in
these DIS entities and renders them on realistic 3D
terrain.

DSTO uses these programs for training simulations,
and have tank and helicopter cockpits that people can
sit in (using real helicopter controls and seats, and
three projectors for an immersive feel) and interact
with the virtual entities. As part of a joint research
project, [PIEK99c] it was thought it could be useful if
the DIS systems could share information with
Tinmith. Using a Lucent WaveLAN card in the
laptop, the DIS packets were passed from the DSTO
network to the wearable by a Linux based desktop
machine. This interface allows the DIS simulations to
see the wearable moving outdoors, and also allows
the wearable to see all the DIS entities. The wearable
computer can then participate in the exercise just like
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Figure 13
MetaVR Screen Shots

Integration With Tinmith

anything else.

The screen shots above show the displays seen by the
users indoors. The top four are MetaVR output, and
the lower one is the ModSAF entity generator. Each
of them are projected onto the walls of the
development room at DSTO, giving a command
centre like feel. As the wearable person walks around
outdoors, people indoors can keep track of their
location and current surroundings from the 3D
rendered displays. The flying vehicles are generated
by the helicopter simulator, which is being flown by
a human pilot indoors. The wearable user can see all
the simulated entities on their HMD. The goal
achieved was to improve the situational awareness of
all the users of the system.

3.6 AR-Quake

A project just completed this year was performed by
a group of computer science honours students. The
display module used in Tinmith was turned off, and
instead, the open source version of Quake was used
to draw the displays. The program was modified to
read UDP packets generated from Tinmith’s sensor
processing code, and the renderer was slaved to the
GPS and compass positions.

By supplying the game with models of the UniSA
campus, the user can run around outside and play a
game of Quake, except it is now a physical game
rather than just sitting down. If you want to move in
the game, you must move in real life. By having
multiple wearables and wireless networking, it is
possible to play against other people in real life.

Figure 14 – ARquake Game On Campus

The figure above shows some example shots of a
person playing the game. Some of the Quake
monsters were modified to improve their visibility,
and the controls for moving the player are non-
existent, but apart from that, the game plays exactly
the same as normal.

3.7 Summary

The previous subsections have covered some of the
examples we have developed using the Tinmith
system. These are designed to show what AR is
capable of, but this is by no means the limit. AR and
VR systems have traditionally lacked anything in the
way of a user interface, and so the systems tend to be
very much read only – you can’t interact with them,
and this limits what you can do. By making them
more interactive, this should allow lots of new
applications.

4 Software Support

When the Tinmith system was initially being
designed, there were a number of requirements that
had to be met for the development environment. This
includes kernels, libraries, and development tools.
Since a large investment of time was going to be
made into something that could be reused in the
future, making the right decision the first time was
important.

4.1 Operating System

Some of the operating system requirements were:

- True pre-emptive multitasking
- 32-bit memory management and protection
- Interprocess communication
- TCP/IP network support
- Fast graphics rendering support
- Interface to diverse types of legacy hardware
- Low resource requirements
- High reliability

DOS is a good system if you want to talk low level
with hardware, as it is only a program launcher and
then gets out of the way, but there is no support for
this any more, and does not support many of the
requirements above.

Win32 has good support for new hardware being
released, with all manufacturers writing drivers, and
has a good working support base of APIs to do
everything from multimedia to 3D. However, it does
not allow tinkering with internals, no remote
administration, wastes resources, has questionable
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reliability and protection, and just generally lacks the
flexibility and control required to build a system like
this.

The Linux and FreeBSD kernels, with GNU tools,
and the X window system, tend to be very stable, and
problems can be always be fixed. Resources are kept
track of carefully, and used minimally, and it is
almost impossible to crash the systems due to their
design. The support for most hardware (both new and
legacy) is excellent, with well-written drivers. The
only catch is that driver support tends to lag by a few
months for new hardware, and some rare hardware
takes longer. Also, the APIs for things like USB,
sound, multimedia, and 3D are also lagging behind
Win32, although just recently this is starting to
change. Many of these problems are caused by
hardware manufacturers, (the developers of these
drivers do a fantastic job) but at the end of the day, if
you are building something to be used in the real
world, you have to use what works. Our machines
previously used Slackware, but now use RedHat 6
distributions. The system has been tested under
FreeBSD as well, and will port to any Unix-like
system that has all the libraries we use.

4.2 Free Software

The technical superiority of the system chosen was
the main factor in selection - things like licensing,
cost, or favouritism were not part of the process. If
there were tools that could have done the job better,
but with some kind of cost and no source code, we
would have selected them instead. Having a kernel
with open source is handy, but during the life of the
Tinmith system, we have not yet made any changes
to it. In reality, most people are not able to write their
own video or network card driver, or fix a bug in the
kernel, without a lot of experience and dedication.
Since we are not making any changes to other’s code,
there are not too many differences between GPL,
BSD, and other open source licenses.

4.3 Development Tools

The GNU tools form a major core for the
development environment, using programs such as
Emacs, and the GNU C/C++ compiler and debugger.
These programs have proven to be of excellent
quality, although there are some rare bugs that occur
in the g++ compiler. The PostgreSQL database is
used to store configuration information for the system
instead of traditional text files. Other programs such
as CVS and KDE are used to complete the code
development environment, along with the rest of the
standard programs included with most Linux
distributions.

4.4 Graphics Support Libraries

Implementing everything from scratch can be quite
difficult, and so where possible, other libraries were
used to provide functionality. The most important
area was graphics rendering, and so the main focus is
on this.

The original prototype Tinmith-I system onwards
used X protocol drawing calls, and double-buffering
in pixmaps for smooth refreshes. The displays were
quite primitive with only 2D objects, and so it was
possible to render frames at a reasonable speed using
this method. However, when rendering thousands of
primitives per frame at very high refresh rates, X
protocol breaks down. The amount of task switching
and IPC between the X server and display module
causes the system to waste most of its CPU time in
the kernel instead of getting real work done. The one
major flaw we can see with the X model for high
performance graphics is that it requires IPC to do
anything, although this is changing, with support for
new architectures like DGA and GLX.

As a result of this, a more direct approach was
needed. It would have been possible to use the shared
memory extensions to send client rendered frames to
the X server, but this would require writing a
complete graphics library for handling lines,
triangles, and so forth. This could take a lot of time to
implement properly, and has been done before many
times already. Unix users have tended to focus on the
X window system as the only way to do graphics, but
some times direct to hardware is the only way to go.

Libraries like SVGAlib allow the programmer to
write to the display directly, but this library is very
old and has limited support for newer video
hardware. It does not seem to be maintained by
anyone any more, and my impression is that it is
basically dead. OpenGL hardware acceleration was
not supported under Linux at the time (Only Mesa
with slow software rendering, more on this later).
The only available alternative was the Generic
Graphics Interface (GGI) project. [GGIP00] The
purpose of this library is to provide an abstraction
layer for all graphics and input device hardware, and
it works on the console, in X windows using both
Xlib and shared memory, the new frame buffer
drivers in the kernel, plus other special XFree86
extensions like DGA. We used the X shared memory
target, as it was faster than the DGA (direct graphics
aperture) interface, and it did not lock up the console.
The GGI’s ability to abstract away input devices on a
variety of targets was a big plus, as handling this can
be quite tricky in some cases.

So Tinmith-evo4 was created to use the GGI
libraries, and with the speed restrictions removed, it
was possible to add support for a full 3D polygon-
based renderer. The performance increase was
phenomenal, the number of system calls dropped to
the point where strace() only showed IPC calls at the
end of each frame being rendered. The GGI project is
definitely a work in progress, the SVGAlib target
does not support double buffering, and many of the
other drivers are not yet complete. There were a few
bugs present in the code for 16-bit mode which we
had to hack out to make things work properly. Also,
there is no decent font support built in, so a wrapper
was written to the Freetype font renderer, allowing us
to draw cached anti-aliased True Type fonts to the



9

display at very high speeds. Speed is everything, and
so we use large amounts of memory (which is cheap
and abundant) to store things that we will use more
than once, rather than create them repeatedly.

4.5 OpenGL Support

The GGI library was selected as it was the only
available solution at the time that worked properly.
Speed is everything, and so having proper 3D
hardware handle the rendering is always preferable.
Most of the processing in Tinmith happens quite
quickly except for the rendering stage, which is the
most complex when dealing with large models.

OpenGL was, and always will be, the real goal, but
unfortunately, the Mesa software-only renderer was
useless as it was too slow. Windows has always had
drivers for OpenGL hardware, but these were not
available to use with Linux. At the start of 2000,
proper hardware accelerated 3D under XFree86 was
almost non-existent, but recently a number of new
drivers have been written to support this. When these
drivers become stable, available with standard
distributions, and are able to operate with laptop 3D
chipsets like ATI Mobile Rage, then Tinmith will be
modified to use this, as having hardware do 3D
rendering is always preferable.

When the system was ported to GGI, a custom 3D
renderer was written to handle the drawing of the
models. However, the internal structure of this was
optimised for OpenGL rather than the custom
renderer, and the code was written so it would be
easy to add the necessary OpenGL calls when it
became feasible.

Due to the design of the GGI library, it should be
possible to make GGI work with OpenGL, rather
than having to throw all the previous code away. GGI
supports dynamic loading and extensions, and some
work is currently being done on writing a generic 3D
API which fits into OpenGL – the progress of this
project is unknown however.

4.6 Summary

Using free software tools and libraries has provided
the ability to be very flexible and create some
powerful software. The operating system is very
efficient and can be stripped down to the minimum
required software so that majority of the CPU time is
dedicated to processing incoming data to render the
HMD output. However, Linux currently lacks API
support for things like writing games (which Tinmith
is very similar to in requirements) and as a result, a
number of wrapper libraries and hacks were made to
make everything fit together. Having proper 2D and
3D with hardware support would make the
development of the system a lot easier. Fortunately, a
dedicated team of developers is making new progress
in this area all the time, however, these things all take
time and resources.

5 Software Architecture

5.1 Introduction

Kernels tend to provide only very limited services to
hardware – open(), read(), write(), and some simple
controls via ioctl(). However, only limited
functionality is supplied and so the rest of it is
implemented in user-land using libraries like GNU
libC. Other systems like X provide interfaces to
devices like mice and displays, to remove the
complexity of having to deal with so many different
kinds of hardware. However, just having low level
libraries that can read desktop input devices and draw
2D pictures is not sufficient for AR/VR technology.

AR/VR is a very new area and is also immature, with
lots of different kinds of trackers, input devices, and
graphics hardware available. Each of them supports a
different standard, and there are no standard APIs to
interface to them.

In order to implement test AR applications for our
research, a set of libraries needed to be developed to
provide a set of basic functions that could be reused.
The Tinmith system is an architecture that developers
can use to develop AR (and other) applications that
deal with trackers, input devices, networks, and
graphics. Many of the interfaces to the kernel in libC
are very primitive and so higher level interfaces are
provided to hide away many of the details, making
life easier for the developer. It also provides support
at very high levels to process the protocols from
various different tracking devices into a common
format, for other code to read. This makes coding the
rest of the system easier as the developer only has to
worry about high level problems and not trivial ones
like parsing tracker outputs.

5.2 Overall Modular Structure

The HMD snap shots shown as examples in this
paper are really only the tip of the iceberg. The
Tinmith system is not just a single process running on
a machine, but in fact a collection of separate
software processes that communicate with each other
using TCP/IP. Each process tends to perform a
separate function and can be plugged in together as
certain needs arise. Proper Unix processes were
originally used because threads were not fully stable
at the time of initial design. Modules that have bugs
can be kept separate so any memory problems can be
isolated from the rest of the system and debugged
individually. The architecture allows us to manage
complexity by keeping things separate from each
other, where possible. Some of the modules in the
system are outlined in the following subsections.

5.2.1 Harvester Module

The most important module is the harvester, which
gathers data in the system. This module polls all the
serial ports available, and parses the incoming data
from the variety of different hardware trackers
plugged in. Tinmith defines special structures for
storing position and orientation information, and the
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values are parsed and stored into these standard
containers. These values are then made available on a
networked object bus for other modules to receive.

5.2.2 Navigation Module

This module takes in position information, and uses it
to make steering calculations for the user. The
module contains a list of all waypoints in the system,
as well as the currently selected one, and as each new
position update is received from the harvester
module, the bearing and distance are recalculated.
These values are then made available for other
modules to use.

5.2.3 Display Module

This module is the other core module, it takes in
values from the harvester and navigation modules,
and uses these to produce the display seen by the
user. Any key presses received on the keyboard are
made available to other modules that need to use this
information for controls.

5.2.4 Sound and Watchdog Modules

This process continuously monitors the various
variables in the system, and will sound audible (beeps
or wave sound files) and/or spoken (synthesized
voice) alarms when it is detected that these values
have exceeded some parameter. For example, you
could setup the watchdog module to sound an alarm
or speak an announcement when you arrive within
100 metres of the destination waypoint.

5.2.5 Web Module

This process interfaces to CGI programs run by the
Apache web server, allowing users to find out
information about the wearable computer from a web
browser. The module provides information about the
wearable location and orientation, and refreshes
continuously on the screen. This is a good example of
how the system can be interfaced to systems that are
of different design.

5.2.6 DIS and LSAP Module

The wearable computer contains an in-built object
tracking module, which allows it to know the location
of objects in the world, and follow their movements.
This interface has been written to allow this tracker to
share information (both ways) with the DIS

(Distributed Interactive Simulation) and LSAP (Land
Situational Awareness Picture System) based
software used at DSTO. This ability once again
demonstrates that the network architecture of Tinmith
allows it to be extended and modified to fit the need
relatively easily. Given something like a radar
tracking device, it should be possible to modify the
system to process targets and track moving real world
objects. If the hardware is capable of it, the system
should be able to handle it.

5.3 Module Communications

To interconnect modules, we used a client-server
style architecture. The server is a data source for
other modules, and it listens on a TCP/IP socket
waiting for incoming requests from clients. A client
that wishes to receive data will contact the server,
and send a listen message to subscribe to it.
Whenever the server updates the value of this data, it
will send the new value out to all clients that have
registered an interest in the message. A client
receiving new data may use it to update the screen, or
calculate new navigation parameters, for example.
Note that many servers in the system are actually
clients for other servers as well.

The entire system operates asynchronously, and is
data driven; if there is no new data in the system, no
action will be taken by any of the software modules.
To illustrate this, consider the case of a new
incoming position from the GPS. The harvester will
process the new data, and then distribute it to all
clients. The navigation module will receive this
update, and recalculate navigation information. The
display module will eventually receive an update
from the harvester, and the new steering instructions
from the navigation module, and use these to redraw
the screen to reflect the user’s new location.

5.4 Software Library

To implement the modular architecture, a software
library to support this was designed, with goals being
to be flexible, extendible, and layered. Layering was
employed to provide increasing levels of abstraction
for allowing modules to interact with the system at
the appropriate level they require, while at the same
time minimising code replication across the system,
and localising possible errors. Rather than modules
focusing on communicating with each other, the code
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only does the tasks it needs to do, and then makes
calls to library functions that actually make
connections, subscribe, and process new incoming
data. As a result, writing software modules to fit into
the system is simple, and with many of the low level
and repetitive details hidden away, also quite small.

The libraries provide functionality for distributed
processing, asynchronous I/O, dynamic software
configuration, and automatic code generation (among
others):

5.4.1 Running modules in parallel over TCP/IP

Each of the modules are implemented as separate
Unix processes. This allows modules to be
distributed over multiple processors on one machine,
or multiple machines due to the network support. The
ability for the system to support this at a fundamental
level improves the scalability for larger, resource
intensive applications. For example, the outdoor
navigation system was distributed over both the
laptop and a second 486 wearable, which was
included to increase the limited I/O capabilities of the
laptop.

5.4.2 Asynchronous I/O event handling

The core of the library revolves around an event
handler which monitors open file descriptors and
waits for them to become available for reading or
writing. When data arrives on the socket, the data is
read, processed, and then handed to the calling code.
As the complexities of doing I/O are abstracted away
from the calling code, (to the point where even the
type of transport is not specified) it is straightforward
for the TCP implementation to be replaced by UDP
by simply rewriting the library code. Slow serial links
requiring writes to be buffered, and support for
handling devices such as X servers, tty devices, and
serial ports are integrated in.

One interesting feature of the I/O library is the ability
to plug in simulated devices. During testing indoors,
it was possible to plug in software simulations
instead of real GPS and compass hardware, enabling
us to test the modules easily. Running GDB through
a HMD outdoors, with a keyboard on the ground, is
not easy and very tiring on the eyes.

5.4.3 Dynamic configuration from the DBMS

Most software tends to use statically compiled
controls, or possibly a configuration text file. Our
system takes configuration to the next level by
loading all system parameters such as the location of
modules, port numbers, device names, and screen
colours into a series of relational database tables.
When the software initialises, it queries the database
and loads the values required. By sending messages
throughout the system when changes are made, it is
possible for clients to reconfigure themselves by
querying the database again. The software does not
have to be restarted as would be required if the
controls were static. The database proved to be very
powerful because someone inside can change it

remotely via the network if needed. A second feature
is the strong type checking by the database engine (in
our case PostgreSQL v6.5) rather than relying on
parsing a text file, which could contain errors. This
feature proved useful when performing testing
outdoors, for example, tuning the various display
options such as colours and font sizes.

5.4.4 Automatic message code generation

Each of the data values in the system (represented by
messages) needs to be able to be sent in a portable
fashion across the network. Since Tinmith is
designed to be compiled on both big and little endian
machines (Sun and SGI machines use different byte
ordering than Intel), it is not good enough just to send
the message in binary format. Also, as versions of the
software change, it would be a good feature if older
versions of the software could handle messages that
have new fields added, but the old ones still remain
the same. A custom program called STC is used to
compile special message definition files into code
and headers that is responsible for serialising and
deserialising them for the network. The precompiler
saves a lot of effort needed to write the code by hand.

5.5 Summary

The Tinmith software architecture was designed from
the start to be flexible, and able to be extended in the
future. The modular design enables new components
to be plugged in easily, and many of the prototypes
created with this system were not designed until after
the architecture was complete. The architecture is
data driven, and can benefit from distributing
components as separate processes across multiple
computers. A layered implementation eases
application development, increases the overall
reliability of the software, and gives a degree of
device independence.

6 Problems and Notes

During the development of the work presented here, a
number of issues and problems became apparent.
Linux and its support environment is not perfect, and
there are lots of places with room for improvement.
However, improvement is always something the free
software community has excelled at, a good example
being the KDE and Gnome projects, and so given
time these issues will surely be addressed.

6.1 USB Support

Proper USB support for devices like video cameras is
currently only available in development kernels, and
the code has been buggy at the best of times. Since
the USB code is only very new, we had to put in a lot
of effort to try and make Linux talk to the cameras.
At times the machine would lock up, or refuse to
communicate with the camera until reboot.

Also, support for many kinds of other cameras and
serial port interfaces is non-existent, as the
manufacturers have not released specifications or no
one has written a driver yet. We had to shop carefully
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for USB devices to ensure they would work at all.
This is something that will improve with time, but as
of now the support is limited.

6.2 Graphics

Hardware accelerated 3D under XFree86 is just
coming of age now. New extensions to XFree86 v3
and v4 have been made to support certain cards, and
some manufacturers have supplied drivers for their
hardware. However, many chipsets are not supported,
or only with partial functionality. Also, tinkering with
all these new drivers and patches takes a lot of
precious time, having this supported as a standard
feature in some type of future Linux distribution
would be a lot easier to handle. For now, we are still
using custom written renders, but using OpenGL will
mean we can make the code simpler and faster at the
same time, freeing up CPU resources for other uses.

6.3 Higher Level APIs

Linux and FreeBSD operating systems have
wonderfully designed kernels, and good low level
support in libC. However, there is not much higher
level functionality beyond that. Authors who wish to
write games for Linux must currently roll their own
libraries for sound, video, input devices, and
graphics, or they have to hunt around for
development libraries which may or may not do the
job properly. This can take a considerable amount of
time and is probably a reason why some have not
ported their games to Linux. There is currently an
effort in the community to fix this, but these are far
from complete and some projects may not be
completed or have been abandoned.

7 Current Work

7.1 Tinmith Evolution 5

The Tinmith system (up to version four) worked
quite well for a number of years, however there are
also a number of limitations and problems with the
design. While the design had some features that
seemed like a good idea, some of them turned out to
be not used but a performance penalty was still
imposed in the design. Also, there were limitations in
the design which were making it hard to implement
new user interface techniques that we wanted to try
out.

As a result, a new Tinmith design, evolution 5,
written in C++, was put on to the drawing board in
May, and work is currently progressing on that. The
first major difference is the use of C++, version four
used only standard C but portions of the code were
dedicated to providing object oriented features. In
reality, if you are using OO, you should use a proper
OO language. The code contained a lot of void*
pointers internally and this was starting to cause
confusion and problems. Also, extra features like the
STL provide functionality that does not have to be
implemented yourself, and generally more efficient at
the same time.

The other major problem was the software modules –
being implemented as separate Unix processes
required them to use IPC to communicate with each
other. As a result, processing large amounts of data
also required large numbers of system calls to move
all the data around. Waiting for the kernel to task
switch around four or more processes takes time, and
this was causing lag in the renderer output, and as
mentioned before, any lag that is preventable should
be eliminated to improve the quality of the system.
Serialisation, rather than parallelisation, is the key to
efficiency here. Due to the way the libraries were
written, it was not possible to combine all the
modules together into one without making changes
everywhere, and the effort was not worth it.

So as a result, the code was converted into C++, each
part of the system was either modified or rewritten to
fit the new design. The low level parts were rewritten
into C++ code, and the high level code (which took
the most time to write) like the renderer, parsers,
navigation calculations, 3D modeller, and graphical
displays – were all ported over relatively easily. The
original code has now been completely converted and
works as before, but now as a single process with no
threads. Spreading the system over a network is still
supported, but not a requirement like before. The
streamlined design makes the system run faster and
more efficiently, and the code is easier to understand
overall.

The lesson learned from this is that C++ (used
correctly of course) can write programs that are much
easier to understand, especially when they become
very complicated. Trying to solve an object oriented
problem using traditional functions and structures is
really a hack and produces code which can cause
problems in the long run. The effort required to
convert from C to C++ has already paid off, with new
changes being easier to implement.

7.2 Software Availability

The Tinmith system is currently not available to the
public at this time. This system is the vehicle I use to
perform the research for my PhD thesis, and is
currently undergoing major changes to support new
user interface techniques I am developing. The
architecture is usually having changes made, and is
not complete to the point where someone else could
write their own applications easily – there is minimal
documentation except for my own designs and notes.

During the completion of my research, the Tinmith-
evo5 architecture will be finalised, and used to
develop a number of custom testing applications for
user evaluation trials. At this time, the code should be
useable by others and the university may allow the
release the code to the general public. Also, I do not
have enough time at this point to prepare the code for
distribution, accept patches or code contributions
from other authors, and at the same time complete
my PhD thesis on schedule.

Keep an eye on the web page references included at
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the back, or contact the authors for more information
if you would like to work with Tinmith.

8 Conclusion

The purpose of this paper was to give the user an idea
as to what augmented reality is, and some of the
things it can do. Tinmith is one of only a handful of
augmented reality systems in the world today, and
with the new changes for evo5 being made, will also
be one of the most advanced.

Currently, most AR and VR systems tend to be read
only, the user participates by looking at things. With
Tinmith, the authors intend to allow users to interact
with the environment using custom built 3D input
devices to manipulate 3D widgets and objects. The
goal at the end is to produce for 3D environments
what people have been using on 2D desktops. There
are a number of research problems that need to be
solved before this is possible however, just using 2D
techniques from the desktop is not good enough.

Augmented reality is an exciting field to be
participating in, it is relatively new, and there are lots
of ideas to be explored. Rather than just
reimplementing the wheel, we are researching and
designing the original wheel itself.

9 References

[ARMY99] US Army Simulation, Training, and
Instrumentation Command (STRICOM), ModSAF –
http://www-
leav.army.mil/nsc/stow/saf/modsaf/index.htm

[AZUM97a] R. Azuma, Survey of augmented reality.
Presence: Teleoperators and Virtual Environments,
6(4). 1997.

[AZUM97b] R. Azuma, The challenge of making
augmented reality work outdoors. In Mixed Reality:

Merging Real and Virtual Worlds. Y. Ohta, H.
Tamura (ed), Springer-Verlag, 1999. Chp 21 pp. 379-
390.

[AZUM99] R. Azuma, B. Hoff, H. Neely, R. Sarfaty.
A Motion-Stabilized Outdoor Augmented Reality
System. In Proc. of IEEE Virtual Reality ’99,
Houston, TX, Mar 1999. pp 252-259.

[BASS97] L. Bass, C. Kasabach, R. Martin, D.
Siewiorek, A. Smailagic, J. Stivoric. The design of a
wearable computer. In CHI 97 Looking to the Future,

pp 139-146. ACM SIGCHI, ACM. 1997.

[FEIN97] S. Feiner, B. MacIntyre, T. Hollerer, A.
Webster. A touring machine: Prototyping 3D mobile
augmented reality systems for exploring the urban
environment. In 1st Intl. Symposium on Wearable

Computers, Cambridge, Ma, Oct, 1997. pp 74-81.

[GGIP00] Generic Graphics Interface Project,
http://www.ggi-project.org, 2000.

[JACO97] M. Jacobs, M. Livingston, A. State,
Managing Latency in Complex Augmented Reality
Systems. In Proc. 1997 Symposium on Interactive 3D

Graphics, Providence, RI, Apr 1997. pp 49-54.

[MANN96] S. Mann, Smart Clothing: The Shift to
Wearable Computing. In Communications of the

ACM, Vol 39, No. 8, pp 23-24, Aug 1996.

[META99] MetaVR, Inc., MetaVR Virtual Reality
Scene Generator – http://www.metavr.com, 1999.

[PIEK98a] W. Piekarski, D. Hepworth, Outdoor
Augmented Reality Navigation System – Project
Documentation. University of South Australia, 1998.

[PIEK99a] W. Piekarski, D. Hepworth, V. Demczuk,
B. Thomas, B. Gunther. A Mobile Augmented
Reality User Interface for Terrestrial Navigation. In
Proc. of the 22nd Australasian Computer Science

Conference, Auckland, NZ, Jan 1999. pp 122-133

[PIEK99b] W. Piekarski, B. Thomas, D. Hepworth,
B. Gunther, V. Demczuk. An Architecture for
Outdoor Wearable Computers to Support Augmented
Reality and Multimedia Applications. In Proc. of the

3rd International Conference on Knowledge-Based

Intelligent Information Engineering Systems,
Adelaide, South Australia, Aug 2000. pp 70-73.

[PIEK99c] W. Piekarski, B. Gunther, B. Thomas.
Integrating Virtual and Augmented Realities in an
Outdoor Application. In Proc. of the 2nd International

Workshop on Augmented Reality, San Francisco, Ca,
Oct 1999. pp 45-54.

[THOM97] B. Thomas, S. Tyerman, K. Grimmer,
Evaluation of Three Input Mechanisms for Wearable
Computers. In 1st Intl. Symposium on Wearable

Computers, Cambridge, Ma, Oct, 1997. pp 2-9.

[THOM98] B. Thomas, V. Demczuk, W. Piekarski,
D. Hepworth, B. Gunther, A Wearable Computer
System With Augmented Reality to Support
Terrestrial Navigation. In 2nd Intl. Symposium on
Wearable Computers, Pittsburg, Pa, Oct 1998. pp
168-171.

10 Further Information

10.1 Reading Sources

There is a lot of information about the topics
discussed here on the Internet, use a search engine to
look for it. A number of conferences proceedings
from IEEE and ACM contain interesting material,
such as:

- ACM CHI (Computer Human Interaction)
- ACM I3D (Interactive 3D Graphics)
- ACM SIGGRAPH (Graphics)
- ACM UIST (User Interface Software and

Technology)
- IEEE ISAR (International Symposium on

Augmented Reality)
- IEEE ISWC (International Symposium on

Wearable Computers)
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UniSA
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10.3 About The Wearable Computer Lab

The Wearable Computer Lab is part of the School of
Computer and Information Science, Advanced
Computing Research Centre, at the University of
South Australia. Research areas in the lab include
outdoor wearable computing, augmented reality, 3D
user interfaces, computer graphics, and virtual reality.

Apart from just hacking code, we have also been
known to use soldering irons and sticky tape on
computer hardware occasionally. The original
backpack in 1998 had the laptop attached to the
backpack using packing tape, and when wearing the
computer, an assistant was always present to apply
more tape as needed.
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10.3.2 More Information

For more information about our work, please visit the
following URLs or email us. We always like to hear
about what people think about our research. If you
feel that there is something you would like to
contribute, then please contact us.

Information about the wearable lab
http://wearables.unisa.edu.au

Information on the Tinmith project
http://tinmith.unisa.edu.au

The author’s home page and email address
http://www.cs.unisa.edu.au/~ciswp
wayne@cs.unisa.edu.au
thomas@cs.unisa.edu.au


