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Abstract— This paper presents our position on the development of software for interactive AR applications, particularly those 
deployed in mobile outdoor environments. We describe previous work that has been performed in the field and how the main focus 
has been on low level problems such as hardware abstraction. To develop complex future AR applications, higher level user 
interface abstractions and supporting toolkits will be required. Working in outdoor AR environments with mobile standalone systems 
also introduces new limitations not previously encountered indoors, further complicating the problem. Furthermore, this software will 
have to be designed with the particular environments and hardware in mind to ensure the user interface is optimal. Another problem 
currently unsolved is the development of content for AR systems. Rather than using traditional 2D desktop applications, the 
development and consumption of AR information should both be possible on the mobile system. This allows the instant verification 
of 3D models in AR, which is a core part of the overall design process but not possible on a traditional desktop system. 

Index Terms— I.3.6 [Computer Graphics]: Methodology and Techniques – Interaction Techniques; I.3.7 [Computer Graphics]: 
Three-Dimensional Graphics and Realism – Virtual Reality; J.9.e [Mobile Applications]: Wearable computers and body area 
networks. 

——————————      —————————— 

1 INTRODUCTION

e have been developing prototype augmented reality 
systems for use in outdoor environments for a num-
ber of years. As part of developing these prototype 

systems, we have performed research into the development 
of appropriate software architectures that simplify the de-
velopment of applications. Our current software architec-
ture is named Tinmith-evo5 [22], and combines a variety of 
novel techniques for developing applications that use less 
powerful wearable hardware, mobile 3D graphics, and high 
level user interfaces. We have used this software architec-
ture to develop the Tinmith-Metro application [19] [21], 
which supports interactive 3D modelling in outdoor envi-
ronments using the hands and the body to control the sys-
tem. Figure 1 shows an example of this application in use 
with a landscape gardening example. 

The development of software to support AR environ-
ments is much more challenging compared to other envi-
ronments such as traditional 2D desktops. In 2D environ-
ments, there has been a lot of existing research and imple-
mentations have converged on a generally agreed best 
practice. In contrast, 3D environments such as AR and VR 
suffer from many different types of applications, differing 
opinion on the best user interfaces to deploy, and non-
standardised and changing hardware. Furthermore, there 
are only a small number of software toolkits available to 
simplify applications development, so application develop-
ers must focus on reimplementing the wheel each time for 
their particular requirements. As discussed by Shaw et al 

[28], the development of higher level software toolkits is 
not possible until there are a stable set of low level toolkits 
to support them. For AR environments to become main-
stream and easy to develop for (similar to the ubiquitous 
2D desktop), high level toolkits with a rich feature set are 
required. 

This paper describes our position on the development of 
AR applications based on previous work by ourselves and 
others. Initially this paper starts with a review of some ex-
isting work in the field, followed by our position on various 
areas of interest to AR researchers. We then discuss how 
AR applications may be described relative to existing VR 
based techniques, how outdoor AR has unique require-
ments compared to indoor AR, and how the only way to 
author content for AR is directly in the AR environment 
itself. 

 

Figure 1 – User grabbing a virtual tree for manipulation within the 
Tinmith-Metro mobile outdoor AR modelling application 
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2 RELATED WORK 
This section describes a number of different contribu-

tions that have been made in the development of toolkits to 
support AR and VR applications. As will be described later, 
we believe that AR and VR systems share very similar 
properties and so we describe them both together. 

The first type of software toolkits for VR applications 
were hardware abstraction layers, providing generic inter-
faces to the non-standardised hardware available. Some 
early contributions were MR Toolkit [28] and VRPN [29], 
and some other recently developed software systems are 
DIVERSE [11], MAVERICK [10], OpenTracker [24], and 
VrJuggler [2]. Many of these systems are freely available 
and provide similar types of interfaces to trackers and ren-
derers, indicating that these low level toolkits have con-
verged toward some form of best practice. Other toolkits 
such as dVS [9] and World Toolkit [27] extend this model to 
provide scene graphs, event triggering, and distributed 
processing. 

To support the definition of more complex software, 
there is a need to break down an application into objects or 
modules that communicate through some abstraction 
mechanism. The VRML 2.0 language [31] supports the defi-
nition of scene graphs, and includes fields and routes to 
allow 3D objects to be connected together. The Coterie sys-
tem [14] implements object communications via a distrib-
uted shared memory, allowing applications to be spread 
across multiple systems. Coterie integrates a distributed 
scene graph with animation, an interpreted language, and 
tracking abstractions. The Studierstube system [26] is also 
used to develop distributed applications, but in contrast to 
Coterie it embeds the application into a distributed scene 
graph. Studierstube is based on a distributed version of 
Open Inventor, and to be distributed all components must 
be expressed using these interfaces. 

There are a number of other systems for developing 3D 
applications. DIVE [7] supports distributed scene graphs 
with multicast to improve scalability. Avocado [30] pro-
vides features similar to VRML fields and routes with a 
scripting language. Lightning [3] implements data flow 
between objects to support distribution. VB2 [8] uses a con-
straint engine to implement relationships between objects. 
DWARF [1] uses a services based framework to connect 
components over a network. Although there has been a 
wide range of research in software engineering for AR and 
VR applications, the state of the art is still quite primitive 
compared to the maturity we have in 2D desktop applica-
tions. 

3 AR AS AN EXTENSION OF VR 
Virtual reality systems have traditionally been designed 
around a sensor model where tracking devices are read in, 
processed, and then used to draw output to a head 
mounted display. The simplest VR systems use an input 
device that tracks the head of the user, and this tracking 
data is used to generate a matching viewpoint for a head 
mounted display. When viewed in the context of Milgram 

and Koshino’s reality-virtuality continuum [15], VR and AR 
are two locations along this spectrum. Therefore, AR sys-
tems can be modelled similar to VR systems, although there 
are some additional requirements. The first is that a view of 
the physical world must be provided for an augmented 
overlay. This overlay may be performed quite simply using 
video cameras and software overlay, or optical combination 
in the HMD. Secondly, virtual objects must be stored rela-
tive to physical world coordinates, and performing VR ac-
tions such as flying [25] or scaled world techniques [16] 
does not make sense when virtual objects must register 
with physical objects. 

Our latest generation of augmented reality software is 
Tinmith-evo5 [22], which is based around processing ob-
jects that are connected together to flow data through the 
system, processing inputs to produce outputs. The sensor 
model in use is similar to the traditional VR model and is 
depicted in Figure 2, where sensors are processed using 
application code and run time configurations to render data 
to a HMD. Internally, the sensors are abstracted as objects 
and when new data arrives, these objects notify other lis-
teners that updates are available. Processing objects connect 
to these data objects and receive notification messages, cal-
culating a new result that is then made available to other 
processing objects. These objects are connected together 
into a directed graph and the final calculated values are 
used to render to the HMD. The objects are stored in an 
object repository based on a file system model, and a con-
sistent methodology is used for the design of each set of 
objects. 

The use of a sensor model processing values for render-
ing to a HMD is common for many AR and VR systems. 
The tracking of the head is a relatively simple operation, 
and there are no gestures or commands to interpret – the 
user simply walks around to interact with the computer. 
These systems are therefore quite simple to implement, 
since the software is basically a renderer controlled by a 
tracker. The most difficult problem currently facing both 
AR and VR systems is the user interface technology how-
ever, and this has not been thoroughly addressed yet. 
Without good user interfaces, we cannot develop applica-
tions more complex than the simple rendered AR demon-
strations currently available. 

On a 2D desktop, devices such as mice and keyboards 
are commonly used to interact with intricate graphical user 
interfaces, and these interfaces have been highly refined 
over many years. For 3D environments, there are currently 
a number of different input methodologies depending on 
the designer and the particular application in mind, and 
there is still disagreement on the most intuitive interaction 
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Figure 2 - Overall Tinmith-evo5 architecture with sensors 
processed using libraries and application components, and 

then rendered to the HMD 
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methods. For example, 3D systems use a wide range of in-
put devices such as trackballs, gyro mice, keyboards, dials, 
speech, 3D wands, props, and tracked gloves. For user in-
terfaces, researchers have used direct 3D manipulation, 
action at a distance techniques, the use of 2D interfaces in 
3D environments, and command entry. In many cases, user 
interfaces are borrowed from 2D environments and used 
directly in 3D, with unintuitive controls for the user given 
the completely different environment. We do not believe 
that 2D user interfaces or input devices should be used in 
the development of AR applications since there is a mis-
match in capabilities. 

We see augmented reality as enhancing a user’s percep-
tion of the environment, and believe the best way to cur-
rently achieve a sense of presence is through the use of 
HMDs. When wearing a HMD, we need input devices and 
user interfaces that are designed for this type of environ-
ment. In an immersive environment such as this, we think 
that using intuitive gestures of the hands and the body is 
the best way of interfacing to the user. While in VR tech-
niques such as flying [25] and scaled world [16] are used, 
these are not useful for AR since it requires the user to 
break registration with the environment. Devices such as 
keyboards and 2D mice controlling a cursor are designed 
for the desktop and add levels of indirection that are unin-
tuitive for a user. In the Tinmith-Metro application [19] [21], 
we use gloves that map hand motions and finger pinches to 
a pointing and command entry system designed specifi-
cally for the mobile environment. The gloves are currently a 
technological limitation, and in the future we would like to 
make it possible for a user to interact with the system with-
out having to wear anything on the hands. We envisage the 
user controlling the wearable in the same way that two 
workers may discuss a task on a construction site. We have 
also been inspired by the Put-That-There system [4], where 
a user can work with shapes by pointing at them and 
speaking commands to perform. Working in a 3D environ-
ment is different from 2D interfaces, because objects can be 
rendered as they are normally shown in the real world and 
are not just abstract icons or 2D pictures on a monitor. With 
the future ability to render realistic 3D objects that merge 
seamlessly with the environment, having interfaces that 
match what users experience in daily life is definitely desir-
able. When designing these user interfaces, we feel that 
new input methodologies must be designed for 3D envi-
ronments rather than just ‘hacking’ existing 2D devices into 
immersive applications. As an extension to the previous 
arguments, since 3D environments are inherently artificial 
it should also be possible to perform actions that are not 
possible in the real world. Some artificial methods devel-
oped for selecting 3D objects at a distance are Spot Lights 
[13], Apertures [6], and Image Plane Techniques [23]. One 
limitation of many existing demonstrations is that each 
technique is only demonstrated individually and there are 
no controls to switch between many functions. Many sys-
tems such as SmartScene [17] have intuitive interfaces for 
editing existing 3D worlds, but performing abstract crea-
tion concepts from scratch is not as simple or not possible. 

Therefore, an equally important consideration in user inter-
faces is command entry, where the user is free to activate 
appropriate techniques at any time in an easy and intuitive 
way. While our Tinmith-Metro menu system attempts to 
address the problem of building user interfaces that sup-
port many techniques with flexible command entry, it is far 
from perfect and is still in its infancy. 

As stated earlier, an important problem for AR systems 
(and 3D environments such as VR) is the development of 
powerful user interface techniques. With the development 
of interfaces that are as refined as desktop computers, it 
will be possible to then build real applications with similar 
usefulness. Based on this argument, developing software 
architectures that provide hardware abstractions is not 
enough, and more higher level functionality is required. 
While low level software interfaces to the hardware, higher 
level software must interface with humans and user inter-
faces make this happen. 

4 MOBILE OUTDOOR AR 
We believe that the most powerful augmented reality 

applications are those where the user is able to freely roam 
about any environment experiencing overlaid virtual ob-
jects. While performing AR at a desk or physically tethered 
to a piece of infrastructure allows applications for surgery 
or maintenance, a much more general and useful system 
should not be limited to a small working area. We are cur-
rently exploring the development of autonomous mobile 
AR systems that are worn by the user, such as the Tinmith-
Endeavour backpack depicted in Figure 3. This backpack is 
portable and may be used in both indoor and outdoor envi-
ronments. When working outdoors, tracking technology 
such as GPS and hybrid inertial/magnetic sensors allow an 
almost unlimited tracking range in conditions where the 
sky is mostly visible. When indoors, we have used tracking 
technology such as fiducial markers [20] although there are 
other technologies available. Our research work is not fo-
cussed on the development of improved trackers but on 
what is currently possible. 

Working outdoors imposes a number of problems not 
normally experienced when indoors, such as uncontrollable 
lighting, environmental noise for various sensing technolo-
gies, a lack of infrastructure, and the availability of less 
tracking hardware that can operate under these conditions. 

    

Figure 3 – Tinmith-Endeavour backpack with side and front views 
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These problems are supplemented by other problems asso-
ciated with performing mobile computing and there are 
limitations on weight, size, and power consumption since a 
human must be able to carry the equipment. Rather than 
testing our software on simulators and planning for tech-
nology to improve in the future, we have designed our 
software so that it can be tested and demonstrated on cur-
rently available technology. When designing software ar-
chitectures, it is important to keep the limitations of mobile 
outdoor hardware in mind so that it will be possible to im-
plement. For use on low end wearable computers, the Tin-
mith-evo5 software architecture has been implemented us-
ing C++ and the infrastructure provided is designed to be 
light weight and optimised for the most common applica-
tions. For example, object communication is by default per-
formed using function calls, and network distribution (with 
associated performance penalties) is only used when re-
quired in rare cases. 

Interfacing to mobile outdoor hardware also has some 
other unique properties compared to working fixed in-
doors. The backpack’s batteries discharge after an hour or 
two of operation, and so it is desirable that the user can 
swap the batteries without restarting. Some devices such as 
cameras need to be reinitialised before the software can 
continue operation, and applications should be designed to 
handle these restart conditions if possible. Some operating 
systems may suffer internal errors when cameras are dis-
connected during use however, and there may be no grace-
ful recovery mechanism for software applications. Another 
problem with mobile outdoor AR is that the hardware in 
use is constantly changing. For example, in the last 2-3 
years, slow USB cameras appeared and were then replaced 
by Firewire, and USB interfaces have allowed the chaining 
of virtually any number of devices rather than being lim-
ited to only the fixed serial and PCMCIA ports on a laptop. 

Apart from just interfaces, the tracking technology being 
used also is quite limited in comparison to outdoor envi-
ronments. For example, for many fixed indoor AR and VR 
applications there are a number of excellent tracking sys-
tems based on ultrasonics, active magnetics, and fiducial 
markers. When working outdoors however, none of these 
systems are available for use since they require fixed 
mounting or are affected by noise generated outdoors. The 
equivalent hardware for outdoor tracking tends to have 
accuracy values at least an order of magnitude worse (GPS 
is at best 2 cm, while indoor trackers may be sub-
millimetre) and so improvements are constantly desired. As 
funding is acquired or as technology improves, these de-
vices are replaced and so having suitable hardware abstrac-
tion and configuration layers that can support this helps to 
improve application portability. 

Given that outdoor tracking hardware is generally at 
least an order of magnitude worse in accuracy than in-
doors, this must be kept in mind when implementing user 
interfaces. Many VR systems implement menus, toolbars, 
or objects that are grabbed directly by the user with fine 
grained hand tracking, but this is difficult to achieve out-
doors. We believe that the user interface must be tailored to 

the particular tracking and display technologies available, 
as these will never be perfect and so will always be a con-
cern. While it is possible to borrow ideas from existing do-
mains such as VR, some of these will not work with lower 
resolution tracking or the different display type and so al-
ternatives may be required. While we previously stated that 
working with AR is similar to VR type problems, differ-
ences between user interfaces may be required because the 
technology is not quite the same. Without considering these 
differences carefully, ideas which seem useful from one 
domain may not be possible to implement in another. 

5 CONTENT DESIGN 
Content for AR and VR systems is traditionally designed on 
2D desktop systems running software such as 3D Studio 
Max or AutoCAD. These programs allow the specification 
of models that may then be displayed on a HMD with a 
separate AR system. However, a main requirement of AR is 
that the models are overlaid onto the physical world and a 
desirable goal is for the user to achieve a sense of presence 
with the virtual objects. Actual physical coordinates must 
be used to represent object locations and the object must be 
presented correctly to the user. Since the previously men-
tioned design tools are both desktop based, there is no way 
to verify the models without loading them onto an AR sys-
tem and trying them out. While the modeller can perform 
careful and accurate measurements of most of the object 
properties, this is tedious and even then there is still no 
guarantee the user will be comfortable with the model or 
find it useful. Verification allows us to answer the following 
questions: How do you know if the object is correctly 
placed into the physical world? How do you know if the 
object has the correct proportions, colours, shading, and 
other visual effects? Is there too much or too little detail for 
the user’s needs? These are not just questions about supply-
ing accurate measurements and tracking, but human per-
ception issues that are important to get right because oth-
erwise the models may be confusing or not seem realistic 
enough. 

Rather than having the user switch between a desktop 
system for modelling and an AR system for verification, we 
propose the use of a single AR system to perform both ac-
tions simultaneously. An AR system would then be a 
standalone application that is independent of any desktop 
computers and users, and would allow a system initially 
containing a blank universe to be used for model creation 
rather than just consumption. During the modelling proc-
ess, the user can verify the current model against the physi-
cal world, instantly seeing where changes need to be made 
because the process is performed in situ. Brooks also de-
scribes iterative modelling approaches as a good way of 
capturing 3D models of objects in the physical world for VR 
applications [5]. By creating an initial approximate model 
and iteratively refining those parts that require it according 
to the judgement of the user, a model can be created that 
adequately meets the requirements without wasting time 
on unnecessary detail. 
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The Tinmith-Metro system [19] [21] takes the previously 
described concepts of real time modelling and applies them 
to the AR domain. In Tinmith-Metro, the user is able to 
walk around outdoors and use specialised techniques we 
have developed named construction at a distance to form 
planes, delimit large ground features, form solid shapes, 
specify constructive solid geometry operations, manipulate 
objects, and carve away parts of objects. Figure 4 shows a 
filmstrip of the view through the HMD showing a user ro-
tating at a distance a 3D object placed in the environment. 
A key part of the Tinmith-Metro modelling system is that 
most modelling can occur without the user having to 
physically touch the object, allowing the capture of objects 
at large distances or at scales beyond the user’s reach. We 
believe that AR systems implementing modelling tech-
niques such as these are the only way to design accurate 
static content for AR because they support critical verifica-
tion that is not possible on a desktop. 

Another area we have performed some initial experi-
mentation in is with the use of alternative views. Figure 5 
shows an example where an external VR view is integrated 
into the application, allowing the user to improve their 
situational awareness by seeing the world from different 
viewpoints within the HMD. This type of view was initially 
introduced to VR by Koller [12], and we have implemented 
a number of other world and body relative views as well as 

a polygon showing live video from the user’s AR head 
camera. This same view is also useful for collaborative ap-
plications where an indoor user wants to monitor the ac-
tions of an outdoor wearable user performing a modelling 
task. 

The development of dynamic content such as animations 
or attaching scripts to AR objects further increases the de-
mands on user interface design and has not been addressed 
yet. High level authoring tools such as ALICE [18] have 
been developed to allow users to implement simple desk-
top VR applications with a point and click mouse based 
scripting language. We envisage modelling systems such as 
Tinmith-Metro extended to support the powerful capabili-
ties and ease of use of ALICE, but modified to work intui-
tively in an AR environment. To support this, development 
of new user interfaces for AR that are tailored for the envi-
ronment will be required to support the rich command set 
needed. 

6 CONCLUSION 
In this paper we have described our position on a num-

ber of areas that are related to software engineering for 
augmented reality. A comparison between AR and VR was 
made to explain how it is possible to leverage similar tech-
niques and existing research from VR into AR. A common 
problem with both AR and VR is that they share a lack of 
higher level software toolkits, especially those that provide 
user interface abstractions. Good user interface design is 
the key to developing useful AR applications that can per-
form many functions and yet still remain easy to use. The 
Tinmith-evo5 software architecture was presented as a way 
of supporting the development of AR applications, with a 
particular focus on mobile outdoor AR environments al-
though not limited to only these. The Tinmith-Metro appli-
cation is presented as an example of a user interface that 
can support complex modelling tasks, allowing it to ad-
dress problems with the design of content for AR systems. 
By using an AR system to design content rather than a non-
AR desktop machine, we provide the ability to perform 
verification in real time with the modelling operation. 

 

 

Figure 4 – Filmstrip showing a rotation operation being performed on a virtual tree at a distance using two handed input techniques 

 

Figure 5 – External VR view of an AR user near a virtual table. A live 
video stream is shown in the user’s frustum to indicate what they are 

seeing. This view is useful for collaborative applications. 
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