
Page 1 of 18

Tinmith-evo5
A Software Architecture for Supporting Research
Into Outdoor Augmented Reality Environments

Wayne Piekarski and Bruce H. Thomas

Wearable Computer Laboratory

School of Computer and Information Science

University of South Australia

Mawson Lakes, SA, 5095, Australia

{wayne, thomas}@cs.unisa.edu.au

Abstract

This paper presents a new software architecture we have developed, known as Tinmith-

evo5, which is designed to streamline the process of writing applications for augmented real-

ity and other types of virtual environments. Writing AR applications can be a complex and

time consuming task, as there is little existing technology to support this process. This lack of

technology requires the implementation of most systems from the ground up. There are many

ways of designing these systems, each having its own set of trade-offs. We present Tinmith-

evo5 as an architecture to handle this complexity, and have found it to be highly effective for

our investigations.

Keywords: augmented reality, virtual reality, 3D user interfaces, software architecture

Figure 1 - Tinmith-Metro 3D building construction example, with user
interface menu and situational awareness gadgets, demonstrating the

Tinmith-evo5 architecture described in this paper

Page 2 of 18

1 Introduction

Over the last few years, we have developed a number of augmented reality applications,

such as the example Tinmith-Metro application [PIEK01b] shown in Figure 1. As part of our

investigations into augmented reality and user interfaces, we have used various designs and

methodologies to construct our systems in an efficient manner. These ideas have been itera-

tively improved over time; and we present the culmination of this process, the Tinmith-evo5

architecture. This architecture comprises a number of components, including an overall ob-

ject-oriented methodology, libraries of components that can be reused for system functional-

ity, and the software to implement complete applications. Although useable for a wide range

of tasks, the main focus was to be able to easily build virtual environments. It is not designed

as an architecture for wearable context awareness or other high level information sharing.

For traditional 2D desktop environments, many stable design methodologies, toolkits, li-

braries, and input devices are available. Since virtual environments (VEs), and augmented

reality (AR) in particular, are relatively new fields, the same support is not mature enough for

implementing new VE applications. This paper presents our approach to writing AR applica-

tions. We intend for our work to serve as a guide to follow for implementing applications to

meet similar requirements.

The remainder of this section will describe an overview of Tinmith-evo5, and what the

new and novel contributions are. We then discuss our requirements and reasoning behind the

design. The next section discusses previous work in the area, comparing that work against

Tinmith-evo5, and how the current design evolved from our previous implementations. The

details of Tinmith-evo5 are then presented as follows: the foundation concepts, support for

input devices, rendering technology, and the modelling system. Finally, we conclude the pa-

per with a demonstration of applications we have implemented with the system.

1.1 Contribution

This paper presents our novel architecture for constructing AR applications, as well as vir-

tual environments in general. As with the design of any system, there are trade-offs that must

be made. Many strive to achieve a theoretically pure solution, which is designed to handle all

possible situations - we take a different approach. We believe architectures that are too ge-

neric can make implementing functional applications difficult. We narrowed down the focus

of our architecture to ensure that it would be simpler to implement, and useful for the tasks

we wanted to perform. The architecture is still expressive enough to provide a platform for a

wide range of AR and VE applications.

Tinmith-evo5 is an architecture for the construction of applications for virtual environ-

ments; it describes many levels in the design and implementation process. Data flow is the

core concept of the architecture (see Figure 2), where sensor data arrives in the system, is

processed through a series of layers, and then is rendered to the display. Tinmith-evo5 defines

all of these processing layers, providing a complete solution for building virtual environ-

ments.

Using the data flow methodology and the techniques we have devised, it is possible to eas-

ily build highly complex virtual environment applications. By writing various objects that

perform operations on data, these are combined together to implement higher-level software

entities such as 3D renderers, geometric modelling engines, user interfaces, tracker abstrac-

tions, and other components that are needed for virtual environments.

Overall, Tinmith-evo5 is a system that facilitates the implementation of 3D virtual envi-

ronment applications with a similar level of support as supplied in a 2D desktop environment.

Page 3 of 18

To achieve this facilitation, Tinmith-evo5 provides support for a wide range of implementa-

tion areas.

Tinmith-evo5 was designed and implemented to support our investigations into user inter-

faces for outdoor AR systems. As an example of using Tinmith-evo5, we have implemented

the Tinmith-Metro application. Tinmith-Metro allows a user to perform 3D interactive

modelling of buildings outdoors, using custom designed 3D input devices and new

interaction techniques.

1.2 Application requirements

Toolkits and design methodologies are useful when they solve some particular problem

domain. As previously stated, our application domain is mobile augmented reality applica-

tions, although we extend this domain to include virtual environments in general. This exten-

sion does not complicate the architecture further and extends its usefulness to other areas.

Simple AR applications are display oriented only. These systems take in head tracker in-

formation, process it, and then render new information as an image out, allowing the user to

experience the VE. These applications are usually straightforward to implement, as they use

conventional renderers, with the head tracker controlling the user’s point of view. The first

application requirement is to provide data flow from the head tracker to the display.

More complicated AR applications allow the user to interact with the system (both to con-

trol the application itself, and the data presented by the application). This involves multiple

different input devices. The next set of requirements is for input device abstraction, state ma-

chines for tracking changes, and a dynamic renderer. The renderer should support a scene

graph of objects, as well as the ability to perform powerful 3D modelling techniques.

1.3 Low level requirements

The two starting points for our design are an object oriented approach and a data flow

model. We employ an object oriented approach to help cope with the problems of implement-

ing large complicated software systems. By breaking our tasks down into small objects, each

one can solve a small problem, and then be

combined together to solve larger problems.

By allowing these objects to communicate

with each other, data can then flow through

the system - from the tracking device input

to the output generated by the renderer (see

Figure 2).

Libraries of commonly used functions are

needed to assist with the implementation of

the objects. In many cases, existing APIs for

the operating system and C library have in-

terface problems that we would prefer to de-

velop solutions to only once. Abstraction

layers are required to make the system port-

able to various hardware and operating sys-

tems types. For example, tracking hardware

has not been standardised, so the communi-

cations still vary widely. An abstraction for

these trackers is required for orientation and

position information.

Hardware abstraction
Convert data into object

Process object data flow
Conversions, state machines

Scene graph
Modify objects, CSG interactions

Render
3D objects plus 2D overlay

Tracker devices
USB, Serial, PS/2

Figure 2 - System data flow

Page 4 of 18

The object oriented classes of the system should be defined in a consistent fashion, to fa-

cilitate their combination in interesting and previously unthought of ways. The data flow

model is designed to allow for this flexibility.

The design should allow abstraction layers to be bypassed if required. This allows for a

trade-off during the implementation phase between the benefits of adhering to the design

model and the construction of workable solutions. The programmer decides how to imple-

ment the solution in order to make their task simpler, as there may be special cases that need

to be catered for. By allowing programmers to access object variables directly, it is also pos-

sible to support legacy code using class wrappers (this feature allowed us to leverage our

work from previous systems). Fundamentally, an architecture should not force the application

to pay a performance penalty for features not required at a given instance – resources in mo-

bile computers are at a premium, and so minimising wastage is desirable.

This is not an architecture to be employed by novices, the programmers implementing the

applications require an in-depth working knowledge of the system. The architecture has been

designed to facilitate our research, and we are presenting the concepts to help others develop

similar applications.

2 Previous work

A number of previous researchers have identified the need for toolkits and abstractions to

help implement VE applications. There are a number of areas that need to be addressed, such

as data distribution, rendering, user interaction, tracker abstractions, object extensions, and

rapid prototyping. Most previous work only focuses on a subset of areas, leaving the others

solely to the implementer. Tinmith-evo5 attempts to provide solutions to all of these areas, as

we believe implementing VE applications requires them. This section presents concepts from

a number of systems we have referenced during the design process.

2.1 Existing distributed VE systems

A popular area of investigation is designing and implementing distributed virtual environ-

ments. This involves operating a software system on multiple processors, and distributing real

and simulated entity locations over a network. A focus of these investigations has been on the

protocols used to send the information between the processes. Protocols such as SIMNET and

DIS (IEEE standard 1278) allow systems to share information with each other, but do not

help the programmer implement their software. The type of information sent is restricted to

entity objects, containing position, orientation, and related data only. Extensions for features

like articulated parts are possible, but not always supported. By making these restrictions

however, these systems tend to scale up to large sizes and are more efficient than simpler dis-

tribution schemes. Some examples of these message based systems are SIMNET [CALV93]

and NPSNET [ZYDA92]. However, the programmer is not provided with support to handle

problems like user input, data processing, and rendering. For many applications, program-

mers want to have the ability to decide this themselves, but for our work we require a more

complete approach.

2.2 Existing software toolkits and systems

There are a number of previous systems described (with some being freely available)

which attempt to solve some of the areas identified, but do not meet all our requirements.

The ALICE system [PAUS95] is a very high level system allowing novice users to imple-

ment simple VE applications. The user can specify object behaviours and interact with them,

exploring various possibilities. However, due to the research nature of our work, we wished

Page 5 of 18

to implement new ideas that were previously unthought of, and as a result, making extensions

within the existing framework would be difficult.

VB2 [GOBB93] was designed to demonstrate the use of constraints to implement virtual

environments. When trackers are updating, the constraint engine manipulates objects in the

scene graph, allowing the user to alter the position and orientation of objects. However, con-

straints are only useful as a solution to propagating data around the system, not covering the

remaining problems identified earlier.

One of the most integrated approaches to VEs is COTERIE [MACI96], which was devel-

oped to help implement applications for distributed virtual environments. It contains language

level support for distributing objects over a network, and integrates this with packages that

support an interpreted language, threaded processing, tracker abstractions, and 3D animated

rendering. The main focus of COTERIE was implementing distributed systems, and so the

shared memory aspect is the main core of the system, with other features built around this.

Applications are built up using multiple threads that communicate via replicated shared ob-

jects, with each update blocking the thread and passing through a sequencer process that han-

dles synchronisation. This sequencer inhibits the system from scaling up as well as a non-

synchronised system. An integrated 3D library and tracker abstraction layer allows the user to

implement compiled or interpreted programs to work in AR or VR environments.

3 Tinmith-evo5 concepts

As previously mentioned, we have investigated outdoor AR for a number of years, and

have developed a number of systems. This section describes the previous systems we have

developed, as well as the concepts used for the new design.

3.1 Initial work

Initially, we produced a simple outdoor navigation system [THOM98] that allows a user to

walk through unfamiliar terrain and find waypoints. This was a first attempt at producing an

outdoor AR system, with a simple design that polled for serial port data and X events in a sin-

gle event loop. We knew before the system was finished that we would have to move to a

more scalable design if we wanted to build more complex systems.

The Tinmith project began with the goal of creating a design that would allow AR systems

to be built from abstracted functional blocks and distributed over multiple machines. The sys-

tem was built up using ten separate processes, communicating using a data flow model and

TCP/IP, that could be distributed if needed, or executed on the same machine. Each process

was implemented using functions executed from I/O event callbacks, although the system

was implemented with C and not an object oriented language. Tinmith-III [PIEK99c] demon-

strated how an outdoor AR wearable computer could locate DIS protocol entities, share loca-

tion information with other machines, and allow indoor users to use VR displays to visualise

the outdoor scene.

HMD

Runtime
Config

Application
Code

Tinmith-evo5Sensors

Figure 3 – Overall architecture – Sensors are processed using libraries
and application components, then rendered to the user’s HMD

Page 6 of 18

As we extended the system, there were

problems with having large procedural pro-

grams implemented as only ten modules.

Since the communication was done at the

module level, the modules could not be bro-

ken down or combined together. The TCP/IP

connections and many executing processes

caused the Unix kernel to waste most CPU

cycles performing IPC and context switch-

ing. Debugging the system was difficult

when there were logic errors in any of the

modules. Design flaws in the data flow of

this version prevented the implementation of

complex user interaction without a redesign.

As a result, a new design using previously

learned lessons was deemed necessary.

3.2 Tinmith-evo5 concepts

Although the architecture shares the same Tinmith name as previous systems, the version

described here, Tinmith-evo5, is based on a completely new object oriented design, imple-

mented in C++. The main goals were speed and efficiency, while allowing us to implement

real world applications easily.

The overall design of the system is the data flow model, with objects processing some data

and then making it available to others that are interested (similar to an Observer/Observable

pattern [GAMM95]). In the previous system, these objects were implemented as a small

number of Unix processes. Instead of having processes, objects are now employed, and de-

compose the problem into hundreds of simple and well-defined tasks. Rather than using

costly processes, threads and IPC mechanisms, a single process is used which allow objects

to pass information with no overheads. By implementing serialisation objects, it is still possi-

ble to distribute the system, but this is an extension and not a required part of the system.

Processes can be thought of as containers that allow objects to execute within, allowing them

to be moved or reconnected easily.

Given a suitable set of abstraction layers for the operating system and external libraries, the

entire system is implemented using data flow interfaces. This allows the system to be consis-

tently implemented, and provides the flexibility to easily make changes. Overall, the system

takes in sensor values, processes them inside the Tinmith black box, and writes the results out

to a display, as shown in Figure 3.

4 Tinmith-evo5 implementation

The Tinmith-evo5 architecture is based on the basic concepts outlined previously, but to

implement this, various interfaces and objects were written. The functionality of the inter-

faces and objects described in this section is implemented once at a low level so it can be re-

used consistently. This section discusses the features of this implementation.

4.1 Support libraries

In order to implement the system, numerous support libraries were written to simplify the

process. Operations like low level graphics, I/O abstractions, and other simple functions are

handled in these libraries. The data flow objects in the system use these libraries to simplify

their implementation. Collections of objects are logically placed together into libraries.

Application Support
Menu driver, Event handler, Dialogs, Selections

3D / 2D Render
Scene graph, CSG ops, Manipulation

Interface / Transform
Coordinate systems, Trackers, Transformations

Low Level & I/O
Support code, Callbacks, Serialisation, I/O libs

Application Implementation
Tinmith-Metro, Custom models and menus

Figure 4 – Library layering

Page 7 of 18

Figure 4 shows an overall view of the various components of the system, each building on

the previous. At the bottom level are the libraries that abstract away all the non-data flow

based hardware and operating system calls. The various levels above contain objects that use

instantiated objects at the same or lower levels as their input sources.

4.2 Callbacks

The data flow model is supported by each object implementing callbacks. Objects can reg-

ister an internal callback method with a desired source object. When the source object

changes, the callback method will be executed, allowing the destination object to perform

some processing. Figure 5 shows a code fragment setting up a callback, with (1) of Figure 6

showing the relationship graphically.

An object’s values may be modified in a number of ways, such as using methods, pointers,

or direct memory writing. Tinmith-evo5 does not rely on the compiler preventing access to

the object in order to implement change propagation. When the caller is done making

changes (in many cases, there are multiple changes made) the object’s callHandlers()
method is executed, indicating the finish of this set of changes. The advantage of this scheme

compared to each method call being propagated is multiple changes may be made and then

propagated atomically without the problems of synchronisation and locking.

The callbacks are implemented using cpp preprocessor macros, and allow any method or

static function to be called when a value changes, with type checking to ensure they are com-

patible. Each object maintains a list of callbacks to execute when required. Since these call-

backs are implemented using function calls and pointers, there are no noticeable overheads

imposed.

4.3 Object store

One problem with systems that store large collections of objects is accessing and updating

them; the traditional approach being global variables. To overcome this problem, systems

such as dVS [GRIM91] and COTERIE [MACI96] implement the concept of a repository

where objects can be stored for later retrieval based on a key. The Windows operating system

implements a registry, which is a hierarchical database of values stored on disk, used to con-

figure the operation of the system from a central location. Previous Tinmith systems

[PIEK99c] used an SQL database to store many configuration parameters, allowing dynamic

configuration of various run-time parameters.

Tinmith-evo5 integrates all these concepts into an object store. Instantiated objects in the

system are created and then stored using a pointer into a global memory structure. Using hi-

erarchical path names similar to that used in a file system, objects can be stored and retrieved

by other code easily, without knowing details about the source's creation. The programmer

can create objects and a virtual directory structure will be created to store them.

/* Find source object and attach destination callback to source */
Position *source_position = Position::getStorage (“/dev/trackers/gps/pos”);
source_position->setHandler (dest_position->process_position);

/* Make changes to source value */
source_position->setLatitude (138.00);
source_position->setLongitude (34.00);
source_position->setAltitude (0.0);

/* Execute callbacks for interested handlers (dest_position callback is executed)
*/
source_position->callHandlers ();

Figure 5 - Code demonstating object store usage and callback linking

Page 8 of 18

In previous systems, we had a run-time configuration system and wanted to continue with

this idea in the new design. The run-time configuration is integrated into the object store for

consistency with other system components. Directory structures of text file definitions are

stored on the system’s secondary storage, with a file extension indicating the type of object.

This directory hierarchy is processed when Tinmith applications are initialised, with each text

file being read in. Based on the extension, the appropriate object type is instantiated and

placed in the object store. Then, the text data is passed to the fromText() method of the

object, so it can initialise itself with the contents of the file. This method is manually written

for any object that participates in the configuration database, and is not a requirement. We

manually implement the file formats for human-editable object configuration files as we want

to keep them simple and a single generic format would be confusing. One advantage to the

configuration system is that the files can be edited using a text editor and when saved, the

system re-parses the file and transparently changes the object value in the system. This allows

us to experiment with changing system values during execution such as gadget colours and

locations, strings, and debugging controls, without the complexities of supporting an inter-

preted language. Although text files are employed, Tinmith supports the use of alternative

storage mechanisms such as SQL databases. Text files were chosen as they are easy to main-

tain and primitive disk I/O is very simple and fast compared to a heavyweight database proc-

ess.

Object symbolic links allow the redirection of the flow of data between objects without di-

rect callbacks being attached. The symbolic link object reads a value from one object, copies

it, and passes it on to another. The source object can disappear or be reset to another object

but the final destination object does not need to take any action. Using this feature, we im-

plement a patch board of tracking devices, allowing us to be flexible with the way we handle

the problem of dealing with multiple input devices. An object could be written that monitors

GPS and vision trackers, along with a simulator, and redirects a generic tracking object to

point to whichever is the most accurate at the time. Although it is possible to implement an

object that can simulate this feature, the symbolic link is automatically generated for all ob-

jects and is simpler to use.

4.4 Serialisation

Tinmith-evo5 is not based on data distribution in the same way as systems such as COTE-

RIE. However, using the data flow approach, it is possible to add this functionality if re-

quired. Figure 6 part (1) shows two objects communicating via callbacks, and using a trans-

mit and receive object inserted in the middle, as in (2) of Figure 6, the data can transmitted

ListenerSource

ListenerSource

Callback Function Call

RxTx UDP

(1) Single Process / Single CPU (Default)

(2) Multiple Processes / Distributed On Network

Figure 6 – Network distribution is implemented transparently
using automatically generated serialisation callbacks

Page 9 of 18

across a network or other IPC mechanism if required. When the callHandlers() method

is executed, the data is converted to a string with a method call, sent and received using IPC,

decoded and stored in a local copy, and then made available to the destination object. Each

process maintains its own local copy of the object so that it can be accessed with no blocking

or delays when required for use.

Languages such as Java implement serialisation in the language itself, including the ability

to send large data structures such as circular rings, trees, and graphical objects. These features

would be very useful for our task, but for various reasons we choose not to implement Tin-

mith-evo5 in Java, such as its resource requirements and performance.

We implemented a serialisation mechanism that would work with C++. The major re-

quirement was to avoid having to manually implement code for all the objects in the system,

as this would be tedious and require massive changes if the architecture of the system is

modified. The serialisation was implemented with our custom TCC code generator to write

these functions (discussed in the next subsection). However, it is possible for the programmer

to manually implement serialisation methods if required. We have used this feature in a few

cases to serialise objects that are too difficult for the simple TCC program, or where we can

implement it more efficiently.

We use a simple serialisation scheme that can be implemented in other languages as

needed, allowing other software not written using our architecture to still share information

directly with the system. This is in contrast to implementing a program in C++ to be able to

read Java’s serialised data, which would be a highly complex and time consuming exercise.

Many other systems that use complex serialisation schemes are also difficult to interface

with.

The serialisation system understands primitive C++ types (int, float, double, string, etc)

and also STL containers (vector, list, hash, etc). Objects that implement these types are also

serialisable, the TCC program parses the class definition file to make calls to the basic primi-

tive serialisation functions that convert these values to portable strings. The definition files

are embedded with cpp macros to make this process easier, also telling TCC which values

(such as file descriptors and graphical handles) cannot be serialised. A binary format and In-

tel little-endian byte ordering is employed to ensure compatibility across multiple CPU archi-

tectures if needed.

We use a non-blocking UDP object to perform the transmission of the data over the net-

work, as reliability is not a major requirement in most cases. Tracker updates arrive very

quickly, and so if one is lost then the next one can be used as a replacement. In addition, the

software processes can be restarted transparently without the need to re-establish a connec-

tion. The UDP transport could be easily replaced with a TCP object if required, which guar-

antees reliability but at a much higher performance penalty. As the serialisation system is not

a core part of the system, it can be extended to suit the requirements of an application.

Tinmith-evo5 is client/server based, so one process in the system contains the object, and

others can request to have updates sent as changes are made. Resources are conserved by

only sending the required data to those objects that are interested. For small systems, this is

more efficient than broadcast protocols, although for large systems with thousands of proc-

esses each requiring a value, this may not be appropriate. By using proxy processes, cached

copies of values may be further distributed to others, allowing the system to scale further.

Our architecture does not contain a single marshalling point or database where all mes-

sages must pass through - if the system objects are distributed evenly over multiple processes,

then the load for the propagation of data can also be shared as well. A single marshalling

server is a performance bottleneck and limits the size a system can scale to, and due to the

propagation mechanism used in Tinmith-evo5, is not required.

Page 10 of 18

4.5 Class definition and code generation

C++ supports object inheritance, a preprocessor, and templates, which are very powerful

tools, but still have certain limitations for code generation. The TCC code generator was cre-

ated to write code in cases where we could not do it otherwise. Although it would be possible

to implement all the code manually, much of it is tedious, and simple changes to the system

or the class itself would require a large number of dependent code changes. Since the system

has experienced a number of major changes over its design cycle, minimising these error

prone tasks was a major advantage.

TCC processes the definition file for a class, which is used as the authoritative source of

information for how to generate the code. Figure 7 shows an extract from the C++ definition

file for an IS-300 tracker class, implementing various interfaces. A major advantage is that

Tinmith-evo5 does not have a separate interface definition language like used in CORBA or

SUN RPC. Instead, the definition is the C++ class definition, eliminating the problem of syn-

chronising code against definition files.

4.6 Run-time and low level support libraries

In order to implement the data flow model, a suitable run-time system, along with code

that interfaces to the operating system, is required. Internally, the system is implemented as a

single monolithic Unix process, with no threads. The main point of control is the asynchro-

nous I/O manager, which monitors all file descriptors using select() for incoming events,

and then executes callbacks in objects when they are available for reading. Reads and writes

to file descriptors are all done in a non-blocking fashion, and the I/O manager contains buff-

ers to allow the rest of the system to continue operating when the kernel buffers are full.

While this approach may be complex to implement, it is not visible to the objects that use it –

the advantage is that the code executes in the most efficient manner on the CPU.

We intentionally avoided threads, as they are not useful for our task. In most systems, sen-

sor inputs arrive, are processed, used to affect the state of the system, and then rendered out

to the display – all on a single processor. Since a computer can only perform one task at once,

and each stage in the pipeline is dependent on the previous, (ie. it can’t render the scene

graph until the trackers are processed and have modified the scene) a single thread of control

is all that is required to process the data sequentially. Using multiple threads wastes CPU re-

sources on context switching and synchronisation. Threads are needed (in the rare occasion)

class IS300 : public Storable, public Orientationable, public Matrixable
{
#define STORABLE_CLASS IS300 // Declare class name
#include “interface/storable-generic.h” // Include customised template code

public: // Declare callback using macro wrap-
per
 GEN_CALLBACK_H (IS300, process_device, IOdevice, _dev);

 Orientation *getOrientation (void); // Implement orientationable interface
 IS300tracker *getIS300tracker (void); // Access custom IS300 values
 Matrix *getMatrix (void); // Implement matrixable interface
 RateTimer *getRateTimer (void); // Implement statistics interface

private: // Process dependent variables
 IOdevice *device; // Device pointer, not serialised by
TCC

 TCC_OBJ (Orientation, ori); // Serialised orientation object
 TCC_OBJ (IS300tracker, is300); // Serialise IS300 values
 TCC_OBJ (RateTimer, rt); // Serialise statistics information
 TCC_VAR (double, value); // Serialise C double value
};

Page 11 of 18

when a task must execute independently of the overall event flow of the system, and does not

need to update each refresh of the display. In this case, we move the objects into a separate

container process and distribute the required data using serialisation. We currently only use

this feature for the image recognition component, as the kernel drivers cannot perform non-

blocking video I/O, and the process is resource intensive. We wanted this process interleaved

with the rest of the system rather than blocking it. The entire system can be threaded or exe-

cuted sequentially to whatever level is desired and appropriate for the task.

To help with the development of the system, a number of other libraries have been imple-

mented. The fish-malloc library was written to abstract away allocation using malloc/free and

new/delete. It assists with debugging and implements a number of special checks at both

stages to ensure that memory was not overrun, is released correctly, and does not leak during

operation. Other libraries provide similar functions, but not fully integrated in the same way.

Fish-malloc can be easily tuned or turned off with preprocessor macros, which have no run-

time overhead. This library has proved invaluable in the tracking of problems in the system,

as C++ is fundamentally not as strongly typed as other languages, such as Java. An event

logging system is included which allows the programmer to generate notices and errors that

are written out to the console or a file. When problems occur, these logs (including a GDB

stack trace for fatal errors) can be used to locate the source of the error. Apart from using just

passive run-time checks, the code was written with safety in mind, so common C/C++ pro-

gramming problems in areas such as static buffers and dynamic memory allocation have been

avoided or protected against in most cases.

5 Sensors and events

Since this system is designed for implementing VE applications, the support for trackers

and other input devices is extensive, with a powerful abstraction model and a variety of rep-

resentation formats.

5.1 Coordinate systems

When navigating on a global scale, latitude and longiture (LLH) spherical coordinates are

used to represent locations. GPS trackers also output these coordinates, but in some cases it is

desirable to use other systems. For local navigation, flat Earth models like UTM (Universal

Transverse Mercator) are useful as it is based on a square grid in metres. In other areas, such

as surveying and the DIS protocol, ECEF coordinates (Earth Centred XYZ) are used. The Po-

sition class supports the storing and retrieval of any of these types of coordinate systems

[ICSM00], with appropriate conversions on demand.

5.2 Abstraction interfaces

Most other VE systems support an abstraction layer for various tracking devices. However,

there appears to be a lack of support for representing both absolute and relative devices, as

well as representation units. Apart from just implementing a raw Position and Orientation

class (along with a 6DOF Tracker combination) we have also implemented PositionOffset

and OrientationOffset classes, and the use of units such as metres. These offset classes are

used to represent relative shifts that can then be added to an absolute value to obtain a new

absolute value. For example, a graphics tablet might be tracked absolutely, but the pen is rela-

tive to the tablet. Representing the pen position with a PositionOffset means that we can add

this to our current tablet Position/Orientation values, working out the pen position in real

world UTM coordinates. We also implement C++ operators to allow the combination of val-

ues to produce new results. In the rendering section, we discuss how the scene graph is used

to implement similar functionality at an even more flexible level to support articulated parts.

Page 12 of 18

5.3 Resolution problems

Since libraries like OpenGL prefer Cartesian coordinate systems, we try to use position

values with UTM because this is the most appropriate match. As a user moves around the

world, the origin of the camera moves around as well, and the matrices that perform the ren-

dering are recalculated. If the user moves too far from the UTM origin, these values can be-

come very large, resulting in the values losing resolution when multiplied against large num-

bers of matrices in the OpenGL pipeline. Millimetre level detailed objects close to the user

start to shake and distort, and this causes problems for the user. To overcome this, the render-

ing system and the Position class work together to produce a new dynamic coordinate system

with an origin that is closer to the area the user is operating in (within a few hundred kilome-

tres). This local coordinate system uses smaller values that each object implements, and so

the translation is completely transparent to the user - it hidden inside the system and not visi-

ble unless required. Using this technique, it is possible for our system to operate over very

large coordinate spaces while still handling finely detailed objects, giving it a large dynamic

range which is not possible using standard UTM coordinates.

5.4 User interface

In addition to the user walking around and experiencing the VE, the user has to be able to

interact fully with the system, entering and manipulating data in the same way as is done on

the desktop. Traditional input devices like mice and keyboards are clumsy and inefficient in a

mobile outdoor environment, and so we are investigating new and novel user interface tech-

nology. The Tinmith-evo5 architecture currently includes support for control menus and ob-

ject selection and manipulation. The user’s input device is a 3D-tracked pair of gloves worn

by the user, and this user interface is collectively known as Tinmith-Hand.

Applications that we are building with Tinmith-evo5 have a complex user interface task

space. We integrated a 3D pointing device with command entry to improve efficiency. The

command options are shown in a menu system placed at the bottom of the display. The user

selects an option by making a pinching gesture with the finger that is mapped to the com-

mand shown. Some nodes in the menu will move to the next level in the hierarchy, and others

will execute a command directly. The menu panel is fixed to the bottom of the display, being

visible no matter where the hands or head are located. Our entire system is controlled using

the menu and gloves - there is no keyboard attached to the system.

The main application domain of our current work is complex modelling tasks. We want the

user to be able to walk outside, and construct models that match real world structures using

their hands. Once created, objects need to be manipulated, and therefore selecting them is

also required. We support multiple input devices: one or two handed gloves, trackball mouse,

and fixed eye cursor.

Selection can be a tedious process if there are large numbers of objects to select, so the

user can expand the scope of the selection by moving up the scene graph to select parents of

objects, use different camera angles (such as a top down map or orbital view), and take ad-

vantage of multiple clipboards. These clipboards allow the user to build up clusters of objects

and operate on them as a group, and any number of clipboards are available for use.

Currently, we implement image plane techniques [PIER97] that allow the user to manipu-

late the objects in the selection buffers. Image plane manipulations treat the objects as flat 2D

entities, and map 2D movements of cursors into 3D transformations of objects. Any of the

input devices can be used with this, and two-handed manipulation [ZELE97] is particularly

useful as the user can rotate or scale the object using one hand as a reference for the other.

Page 13 of 18

6 Rendering system

A major core component of Tinmith-evo5 is the rendering system. It is a full hierarchical

modelling system, similar to SGI’s Inventor [STRA93] in that it implements a scene graph of

objects and transformation nodes.

6.1 Renderer implementation

The scene graph for rendering is integrated in with the rest of the system, so that it can im-

plement serialisation and callbacks. Scene graph nodes are also referenced in the object store,

and contain a unique path name so they can be easily referenced elsewhere. Tracker devices

can be directly linked to scene graph nodes using a controller interface (see Figure 8), auto-

matically applying movement to the node, including all children. Using this, we can easily

implement applications with complex articulated models. In our current system, we include a

complete 2 metre human avatar (shown in Figure 10), with 15 separate articulated parts, and

we link all our tracker devices into it. Rather than working out complex matrices to find the

location of our hands in world space (given coordinates relative to a camera at an arbitrary

orientation and position), we use the scene graph to resolve these values for us. Using this,

we can graphically verify the tracker motion rather than debugging complex matrix stacks.

Scene graph nodes can be used as sources to produce values for other objects in the system.

The renderer uses a native custom model format, and participates in the run-time configu-

ration system, so the world and avatar models are automatically stored into the hierarchy at

initialisation using toText(). We have written conversion routines to allow us to share in-

formation with other modelling systems and formats easily.

OpenGL is used to render the displays, with each object in the scene graph containing a

cache of its current generated facet list. Tinmith-evo5 supports complex primitives such as

spheres, cones, planes, etc, which are generated once and only regenerated when their defin-

ing values are modified. The scene graph is optimised to minimise CPU usage.

6.2 Constructive solid geometry engine

A key renderer feature is the constructive solid geometry (CSG) engine. CSG allows com-

plex shapes to be created using only simple input primitives. Any two Tinmith-evo5 scene

graph nodes can be used as an input source to the CSG object, which will produce a new

scene graph node that is the boolean combination of the two nodes. The methods are based on

similar operations used in ray tracers, such as POV-Ray [POVT00].

3D Renderer

IS300

Orientation

Offset

Figure 8 - Tracker to scene graph mapping

Page 14 of 18

Each primitive object is required to be a fully closed surface, with an outside and inside.

Infinite planes are also possible, in that the plane cuts the infinite world into an outside and

inside space. The CSG engine can test if an object is partially or fully inside a second object,

and three fundamental CSG boolean operations possible are demonstrated in Figure 9. Con-

vex objects such as a box can be constructed using six infinite planes and an intersection op-

eration. Combining these operations together may be used to form highly complex concave

objects.

The CSG engine operates on facets. Because of this, the CSG engine operates interactively

and without loss of detail, which is not possible using ray-tracing or voxel techniques. During

a CSG operation, (and whenever a source object is transformed) each source object is broken

down into facets and then subdivided, resulting in a new mesh, which is (input)² in size. Each

facet is then tested with the boolean operation and forms part of the output. While computa-

tionally expensive, the process still executes at interactive rates under manipulation unless

objects with thousands of facets arranged at many angles are used.

7 Applications

An architecture is only useful if there are applications that use its features, and so we have

written two demonstration applications (collectively known as Tinmith-Metro [PIEK01b])

which combine together all the Tinmith-evo5 components. The first example allows the user

to construct models of outdoor structures such as buildings, and the second allows the user to

place down ‘street furniture’ objects while walking around outdoors.

In both cases, we added special custom accelerators to the menus, which would allow the

user to create objects that were customised for the applications. Tinmith-evo5 itself is very

generic and allows the user to specify all the information, but also has the ability to use de-

fault values to minimise the work the user must do.

7.1 Building construction

Traditionally, AR systems render out models that are initially created on 2D desktop sys-

tems. Modelling buildings is tedious and requires the user to switch between desktop (CAD)

and outdoor (tape measure and paper) environments to iteratively refine the model until the

user finds it acceptable. We wished to be able to enter information about the world into our

system in real-time outdoors, using the overlay ability of AR, improving the efficiency of this

task by interactively being able to verify the models during modelling.

We believe that CSG is a natural way for humans to understand modelling concepts, as it

involves operations such as carving and joining, which is experienced in daily life. This mod-

elling concept (involving new user interaction techniques and displays) was one of the driv-

ing factors in the design of Tinmith-evo5.

To model an arbitrary shaped building, we use a number of infinite planes, and then pro-

duce a box out of them using the CSG intersection operation. The user must therefore define

 Pyramid Sphere Union Intersection Difference

Figure 9 - CSG Primitive Operations

Page 15 of 18

these planes and performs the following steps: 1) the user manoeuvres to any location so they

are looking down the edge of a building wall, 2) the eye cursor on the display is placed along

the wall edge by the user, 3) a right facing wall is created by pinching a menu option, 4) the

system creates an infinite right facing plane to the virtual world that intersects the eye cursor

and perpendicular to the image plane. By walking around the building and marking each of

its defining planes (walls, roof, floor) the user is closing off a portion of the world to form a

bounded region. The user can then select the CSG operation to build these objects into a solid

object, throwing away the rest of the facet parts that were used to form it. Figure 1 shows an

example of a building created using this technique, using only the wall, roof, and floor infi-

nite plane primitives. If desired, other building features such as pitched roofs, windows, and

tunnels can be carved using the CSG operations.

7.2 Street furniture

This second example shows how the system is used to implement a ‘street furniture’ appli-

cation. The user can use this to place down prefabricated models of existing community in-

frastructure such as tables, trees, lights, and so forth. We initially created the street furniture

objects in NewTek LightWave, and made them available for instantiation into the scene

graph by placing them in the object store.

Firstly, we create a grass patch using the previously explained infinite planes technique,

which allows the system to represent the ground surface. Next, we walk around the environ-

ment (in this case the university courtyard) and pinch the menu options to place the various

objects in front of us. We can then use the selection and manipulation techniques, or possibly

even a CSG operation, to further refine the model until we are satisfied with its placement.

The final example shown in Figure 10 was created in the amount of time it took to walk be-

tween the various objects, with the system itself not slowing the user down.

7.3 DIS protocol support

The Tinmith-evo5 architecture still supports the DIS information sharing concepts demon-

strated in [PIEK99c], except the new implementation is even more highly integrated and

Figure 10 - Tinmith-Metro outdoor furniture placement

Page 16 of 18

transparent, due to the integrated scene graph support. DIS transmission objects can be at-

tached to the scene graph (or any other suitable object) and generate the required UDP pack-

ets when changes are made or after a timeout. As new entities arrive, a node in the scene

graph (along with an appropriate model representing it) is instantiated to allow the user to see

it, and updated from then on. The asynchronous nature of Tinmith-evo5 allows these packets

to be handled transparently.

7.4 Tinmith Hardware

To execute the applications, we use a custom-built backpack computer shown in Figure 11.

We use a P2-450 laptop with 64 mb RAM and ATI Rage 3D chipset, as the software has

modest requirements on resources. For tracking, we use an InterSense IS-300 for orientation

and a Garmin 12XL GPS with differential for position. The display is a Sony Glasstron PLM-

700e, mounted to a custom head bracket for mounting the tracker and USB video camera. We

use the Linux kernel and libraries, GNU development environment, and XFree86 with Utah-

GLX for OpenGL support.

For input devices, we use a set of custom-built pinch gloves with metallic pads that allow

the user to control the entire system with hand movements and finger presses. A USB Won-

derEye video camera and the AR Toolkit software [KATO99] is used to provide glove track-

ing. A microcontroller is used to poll the gloves and generate serial data for processing in the

laptop.

Figure 11 – (1) Tinmith wearable computer, with glove input devices
(2) Rear shot showing various hardware components

Page 17 of 18

8 Conclusion

This paper has introduced the Tinmith-evo5 design, an architecture that provides a uniform

approach to implementing virtual environments such as augmented reality. This architecture

supports the ability to implement simple object oriented applications that perform a variety of

complex tasks, as demonstrated in this paper. Although other systems already exist, we feel

that there is not one unique solution to the problem, and that each has its own limitations and

advantages. Our system is powerful, robust, highly efficient, and gives the programmer

needed flexibility, at the cost of not hiding all implementation details and allowing the break-

ing of abstraction layers to achieve an objective. It does not attempt to solve all problems, just

those that are important for the particular applications we are developing. Using the Tinmith-

evo5 architecture, we wish to extend our current modelling applications to build even more

powerful systems that can be used in real world environments. By using a flexible architec-

ture, we can extend our design to meet the demands of future, unthought of applications.

9 Acknowledgments

The authors are very grateful for the work of Arron and Spishek Piekarski, who both

helped in the design and construction of the glove and HMD. This work was supported in

part by grants from the Division of ITEE and the Defence Science Technology Organisation

(DSTO).

10 References

[CALV93] Calvin, J., Dickens, A., Gaines, B., Metzger, P., Miller, D., and Owen, D. The

SIMNET virtual world architecture. In IEEE VRAIS '93, pp 450-455, Sep

1993.

[GAMM95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Ele-

ments of Reusable Object-Oriented Software. Reading, Ma, Addison Wesley

Publishing Company, 1995.

[GOBB93] Gobbetti, E. and Balaguer, J.-F. VB2: An Architecture For Interaction In Syn-

thetic Worlds. In 6th Int'l ACM Symposium on User Interface Software and

Technology, pp 167-178, Atlanta, Ga, Nov 1993.

[GRIM91] Grimsdale, G. dVS - distributed virtual environment system. In Proc. Com-

puter Graphics 1991 Conference, London, UK, 1991.

[ICSM00] Intergovernmental Committee On Surveying and Mapping. Geocentric Datum

of Australia - Technical Manual. URL -

http://www.anzlic.org.au/icsm/gdatm/index.html

[KATO99] Kato, H. and Billinghurst, M. Marker Tracking and HMD Calibration for a

Video-based Augmented Reality Conferencing System. In 2nd IEEE and

ACM International Workshop on Augmented Reality, pp 85-94, San Francisco,

Ca, Oct 1999.

[MACI96] MacIntyre, B. and Feiner, S. Language-Level Support for Exploratory Pro-

gramming of Distributed Virtual Environments. In 9th Int'l Symposium on

User Interface Software and Technology, pp 83-94, Seattle, WA, Nov 1996.

[PAUS95] Pausch, R., et al. Alice: A rapid prototyping system for 3D graphics. IEEE

Computer Graphics and Applications, Vol. 15, No. 3, pp 8-11, 1995.

[PIEK99c] Piekarski, W., Gunther, B., and Thomas, B. Integrating Virtual and Aug-

mented Realities in an Outdoor Application. In 2nd Int'l Workshop on Aug-

mented Reality, pp 45-54, San Francisco, Ca, Oct 1999.

Page 18 of 18

[PIEK01b] Piekarski, W. and Thomas, B. Tinmith-Metro: New Outdoor Techniques for

Creating City Models with an Augmented Reality Wearable Computer. In 5th

Int'l Symposium on Wearable Computers, Zurich, Switzerland, Oct 2001.

[PIER97] Pierce, J., Forsberg, A., Conway, M., Hong, S., Zeleznik, R., and Mine, M.

*Image Plane Interaction Techniques in 3D Immersive Environments. In 1997

Symposium on Interactive 3D Graphics, pp 39-43, Providence, RI, Apr 1997.

[POVT00] POV-Team. The Persistence Of Vision Raytracer. URL -

http://www.povray.org

[STRA93] Strauss, P. R. IRIS Inventor, A 3D Graphics Toolkit. In 8th Annual Confer-

ence on Object-oriented Programming Systems, pp 192-200, Washington, DC,

Oct 1993.

[THOM98] Thomas, B. H., Demczuk, V., Piekarski, W., Hepworth, D., and Gunther, D.

A Wearable Computer System With Augmented Reality to Support Terrestrial

Navigation. In 2nd Int'l Symposium on Wearable Computers, pp 168-171,

Pittsburg, Pa, Oct 1998.

[ZELE97] Zeleznik, R. C., Forsberg, A. S., and Strauss, P. S. Two Pointer Input For 3D

Interaction. In 1997 Symposium on Interactive 3D Graphics, pp 115-120,

Providence, RI, Apr 1997.

[ZYDA92] Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P. NPSNET: Con-

structing a 3D virtual world. In 1992 ACM Symposium on Interactive 3D

Graphics, pp 147-156, Cambridge, MA, Mar 1992.

